Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(18): e2118465119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35486698

RESUMEN

The GroEL/ES chaperonin cavity surface charge properties, especially the negative charges, play an important role in its capacity to assist intracavity protein folding. Remarkably, the larger fraction of GroEL/ES negative charges are not conserved among different bacterial species, resulting in a large variation in negative-charge density in the GroEL/ES cavity across prokaryotes. Intriguingly, eukaryotic GroEL/ES homologs have the lowest negative-charge density in the chaperonin cavity. This prompted us to investigate if GroEL's chaperoning mechanism changed during evolution. Using a model in vivo GroEL/ES substrate, we show that the ability of GroEL/ES to buffer entropic traps in the folding pathway of its substrate was partially dependent upon the negative-charge density inside its cavity. While this activity of GroEL/ES was found to be essential for Escherichia coli, it has been perfected in some organisms and diminished in others. However, irrespective of their charges, all the tested homologs retained their ability to regulate polypeptide chain collapse and remove enthalpic traps from folding pathways. The ability of these GroEL/ES homologs to buffer mutational variations in a model substrate correlated with their negative-charge density. Thus, Hsp60/10 chaperonins in different organisms may have changed to accommodate a different spectrum of mutations on their substrates.


Asunto(s)
Chaperonina 60 , Pliegue de Proteína , Chaperonina 60/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Chaperonas Moleculares/metabolismo , Péptidos/química
2.
Bio Protoc ; 11(14): e4099, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34395735

RESUMEN

Understanding the folding pathway of any protein is of utmost importance for deciphering the folding problems under adverse conditions. We can obtain important information about the folding pathway by monitoring the folding of any protein from its unfolded state. It is usually very difficult to monitor the folding process in real time as the process is generally very fast, and we need a suitable read out. In this protocol, we have solved this issue by using a protein that is non-fluorescent in its unfolded state but fluoresces in its native state after folding. The kinetics of refolding can be monitored by following the increase in fluorescence in real time. Previously, this was generally achieved by either monitoring a protein's enzymatic activity or measuring the tryptophan fluorescence, where the signal output depends on well-described enzymatic activity or the frequency of tryptophan residues present in the proteins, respectively. Here, we describe a simple and real-time assay to monitor the refolding of sGFP, a recently described slow-folding mutant of yeGFP (yeast enhanced GFP). We unfold this protein using chemical denaturant and refold in a suitable buffer, monitoring the increase in fluorescence over time. GFP is fluorescent only when correctly folded; thus, using this technique, we can measure the true rate of protein refolding by following the increase in fluorescence over time. Therefore, sGFP can be used as an ideal model to study the in vitro protein folding process. Accordingly, the effects of different conditions and molecules on the protein folding pathway can be efficiently studied using sGFP as a model protein. Graphical abstract: Schematic of the steps involved in the sGFP refolding pathway. Native sGFP is unfolded by chemical denaturation using 6 M GuHCl at 25°C for 1 hour and then refolded in refolding buffer by 100-fold dilution.

3.
ACS Appl Bio Mater ; 4(3): 2798-2809, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35014319

RESUMEN

A single-atom metal doped on carbonaceous nanomaterials has attracted increasing attention due to its potential applications as high-performance catalysts. However, few studies focus on the applications of such nanomaterials as nanotheranostics for simultaneous bioimaging and cancer therapy. Herein, it is pioneeringly demonstrated that the single-atom Gd anchored onto graphene quantum dots (SAGd-GQDs), with dendrite-like morphology, was successfully prepared. More importantly, the as-fabricated SAGd-GQDs exhibits a robustly enhanced longitudinal relaxivity (r1 = 86.08 mM-1 s-1) at a low Gd3+ concentration of 2 µmol kg-1, which is 25 times higher than the commercial Gd-DTPA (r1 = 3.44 mM-1 s-1). In vitro and in vivo studies suggest that the obtained SAGd-GQDs is a highly potent and contrast agent to obtain high-definition MRI, thereby opening up more opportunities for future precise clinical theranostics.


Asunto(s)
Materiales Biocompatibles/química , Gadolinio/química , Grafito/química , Imagen por Resonancia Magnética , Puntos Cuánticos/química , Animales , Células Hep G2 , Humanos , Neoplasias Hepáticas Experimentales/diagnóstico por imagen , Ensayo de Materiales , Ratones , Tamaño de la Partícula
4.
J Mol Biol ; 432(20): 5649-5664, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32835659

RESUMEN

The folding landscape of proteins can change during evolution with the accumulation of mutations that may introduce entropic or enthalpic barriers in the protein folding pathway, making it a possible substrate of molecular chaperones in vivo. Can the nature of such physical barriers of folding dictate the feasibility of chaperone-assistance? To address this, we have simulated the evolutionary step to chaperone-dependence keeping GroEL/ES as the target chaperone and GFP as a model protein in an unbiased screen. We find that the mutation conferring GroEL/ES dependence in vivo and in vitro encode an entropic trap in the folding pathway rescued by the chaperonin. Additionally, GroEL/ES can edit the formation of non-native contacts similar to DnaK/J/E machinery. However, this capability is not utilized by the substrates in vivo. As a consequence, GroEL/ES caters to buffer mutations that predominantly cause entropic traps, despite possessing the capacity to edit both enthalpic and entropic traps in the folding pathway of the substrate protein.


Asunto(s)
Chaperonina 60/química , Chaperonina 60/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Sitios de Unión , Chaperonina 60/genética , Chaperoninas , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico , Cinética , Chaperonas Moleculares/genética , Mutación
5.
Dalton Trans ; 49(21): 6950-6956, 2020 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32352111

RESUMEN

Here we report a novel strategy to crosslink the surface of sulfonated-carbon dots (S-CDs) by complexing SnCl4 with sulfonate groups (-SO3-) on the CDs in aqueous solution. The S-CDs show an average photoluminescence (PL) quantum yield of 21% and a mean diameter of 3.8 nm. After being complexed with Sn4+, the as-obtained Sn@S-CDs present a reduced size of 1.8 nm and a higher PL quantum yield of 32%. More interestingly, the Sn@S-CDs show an enhanced singlet oxygen (1O2) quantum yield as high as 37% compared to that of the S-CDs (27%). In the HepG2 cell line as a model, the Sn@S-CDs exhibit a remarkable cell imaging effect and in vitro PDT efficiency. Therefore, our study proposes a simple but effective cross-linking strategy to synthesize CDs incorporated with metal ions, for the purpose of achieving an enhanced fluorescence intensity and a higher 1O2 quantum yield.

6.
BMC Cancer ; 17(1): 792, 2017 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-29178862

RESUMEN

BACKGROUND: There is a dramatic rise in the incidence of Human papillomavirus (HPV) - associated head and neck squamous cell carcinoma (HNSCC) in the world, with considerable variation by geography, gender and ethnicity. Little is known about the situation in Bangladesh, where tobacco- and areca nut-related head and neck cancers (HNCs) are the most common cancers in men. We aimed to determine the prevalence of HPV in HNSCC in Bangladesh and to explore the possible value of cell cycle markers in clinical diagnostic settings. METHODS: One hundred and ninety six archival HNSCC tissue samples were analysed for the presence of HPV DNA. The DNA quality was assured, and then amplified using a nested PCR approach. The typing of HPV was performed by automated DNA sequencing. Cellular markers p53, Cyclin D1 and pRb were tested on all samples by immunohistochemistry (IHC), as well as p16 as a putative surrogate for the detection of HPV. RESULTS: HPV DNA was detected in 36/174 (~21%) samples: 36% of cancers from the oropharynx; 31% of oral cancers, and 22% from the larynx. HPV-16 was most common, being present in 33 samples, followed by HPV-33 (2 samples) and HPV-31 (1 sample). Twenty-eight out of 174 samples were positive for p16, predominantly in HPV-positive tissues (p < 0.001). No statistically significant association was observed between the cellular markers and HPV DNA positive cases. However, p16 positivity had excellent predictive value for the presence of HPV by PCR. CONCLUSION: There is a significant burden of HPV-associated HNSCC in Bangladesh, particularly in the oropharynx but also in oral and laryngeal cancers. Whilst a combination of PCR-based DNA detection and p16 IHC is useful, the latter has excellent specificity, acceptable sensitivity and good predictive value for carriage of HPV in this population and should be used for prognostic evaluation and treatment planning of all HNSCC patients in South Asia, as in the Western world.


Asunto(s)
Neoplasias de Cabeza y Cuello/epidemiología , Neoplasias de Cabeza y Cuello/etiología , Papillomaviridae/clasificación , Papillomaviridae/genética , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/virología , Adulto , Anciano , Bangladesh/epidemiología , Biomarcadores de Tumor , ADN Viral , Femenino , Genotipo , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Vigilancia de la Población , Prevalencia , Adulto Joven
7.
Nat Prod Res ; 29(24): 2291-4, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25674661

RESUMEN

Ethanol extract of the aerial parts of Bergenia ligulata was subjected to solvent-solvent separation followed by various chromatographic techniques that lead to isolation of bergenine (1), p-hydroxybenzoyl bergenin (2), 11-O-galloylbergenin (3) and methyl gallate (4) as major constituents. Ethyl acetate fraction showed a dose-dependent urease inhibitory pattern with IC50 value of 54µg/mL. Structures of compounds 1 and 3 were established by XRD and 2, 4 by NMR. All these compounds were subjected to DPPH scavenging activity, reducing power assay and urease inhibitory activity. The EC50 7.45 ± 0.2 µg/mL and 5.39 ± 0.28 µg/mL values in terms of antioxidant and reducing power, respectively, were less for 3. Compounds 1-3 showed moderate to significant urease inhibitory potential with IC50 57.1 ± 0.7, IC50 48.4 ± 0.3 and 38.6 ± 1.5. Antioxidant activities and urease inhibitory potential were investigated and compound 3 was found to be the most active.


Asunto(s)
Antioxidantes/química , Benzopiranos/química , Ácido Gálico/análogos & derivados , Extractos Vegetales/química , Saxifragaceae/química , Ureasa/antagonistas & inhibidores , Antioxidantes/aislamiento & purificación , Benzopiranos/aislamiento & purificación , Ácido Gálico/química , Ácido Gálico/aislamiento & purificación , Concentración 50 Inhibidora , Componentes Aéreos de las Plantas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA