Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 7(11)2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39122555

RESUMEN

Reduction in muscle contractile force associated with many clinical conditions incurs serious morbidity and increased mortality. Here, we report the first evidence that JAK inhibition impacts contractile force in normal human muscle. Muscle biopsies were taken from patients who were randomized to receive tofacitinib (n = 16) or placebo (n = 17) for 48 h. Single-fiber contractile force and molecular studies were carried out. The contractile force of individual diaphragm myofibers pooled from the tofacitinib group (n = 248 fibers) was significantly higher than those from the placebo group (n = 238 fibers), with a 15.7% greater mean maximum specific force (P = 0.0016). Tofacitinib treatment similarly increased fiber force in the serratus anterior muscle. The increased force was associated with reduced muscle protein oxidation and FoxO-ubiquitination-proteasome signaling, and increased levels of smooth muscle MYLK. Inhibition of MYLK attenuated the tofacitinib-dependent increase in fiber force. These data demonstrate that tofacitinib increases the contractile force of skeletal muscle and offers several underlying mechanisms. Inhibition of the JAK-STAT pathway is thus a potential new therapy for the muscle dysfunction that occurs in many clinical conditions.


Asunto(s)
Inhibidores de las Cinasas Janus , Contracción Muscular , Músculo Esquelético , Piperidinas , Pirimidinas , Humanos , Piperidinas/farmacología , Pirimidinas/farmacología , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Inhibidores de las Cinasas Janus/farmacología , Masculino , Pirroles/farmacología , Femenino , Adulto , Transducción de Señal/efectos de los fármacos , Persona de Mediana Edad , Quinasas Janus/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo
2.
Sci Adv ; 10(31): eadn4682, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39083600

RESUMEN

G0-G1 phase alternative end joining (A-EJ) is a recently defined mutagenic pathway characterized by resected deletion and translocation joints that are predominantly direct and are distinguished from A-EJ in cycling cells that rely much more on microhomology-mediated end joining (MMEJ). Using chemical and genetic approaches, we systematically evaluate potential A-EJ factors and DNA damage response (DDR) genes to support this mechanism by mapping the repair fates of RAG1/2-initiated double-strand breaks in the context of Igκ locus V-J recombination and chromosome translocation. Our findings highlight a polymerase theta-independent Parp1-XRCC1/LigIII axis as central A-EJ components, supported by 53BP1 in the context of an Ataxia-telangiectasia mutated (ATM)-activated DDR. Mechanistically, we demonstrate varied changes in short-range resection, MMEJ, and translocation, imposed by compromising specific DDR activities, which include polymerase alpha, Ataxia-telangiectasia and Rad3-related (ATR), DNA2, and Mre11. This study advances our understanding of DNA damage repair within the 53BP1 regulatory domain and the RAG1/2 postcleavage complex.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Reparación del ADN por Unión de Extremidades , Proteína 1 de Unión al Supresor Tumoral P53 , Recombinación V(D)J , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Animales , Humanos , Roturas del ADN de Doble Cadena , Ratones , Daño del ADN , Translocación Genética
3.
Nucleic Acids Res ; 52(9): 5048-5066, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38412274

RESUMEN

Two DNA repair pathways, non-homologous end joining (NHEJ) and alternative end joining (A-EJ), are involved in V(D)J recombination and chromosome translocation. Previous studies reported distinct repair mechanisms for chromosome translocation, with NHEJ involved in humans and A-EJ in mice predominantly. NHEJ depends on DNA-PKcs, a critical partner in synapsis formation and downstream component activation. While DNA-PKcs inhibition promotes chromosome translocations harboring microhomologies in mice, its synonymous effect in humans is not known. We find partial DNA-PKcs inhibition in human cells leads to increased translocations and the continued involvement of a dampened NHEJ. In contrast, complete DNA-PKcs inhibition substantially increased microhomology-mediated end joining (MMEJ), thus bridging the two different translocation mechanisms between human and mice. Similar to a previous study on Ku70 deletion, DNA-PKcs deletion in G1/G0-phase mouse progenitor B cell lines, significantly impairs V(D)J recombination and generated higher rates of translocations as a consequence of dysregulated coding and signal end joining. Genetic DNA-PKcs inhibition suppresses NHEJ entirely, with repair phenotypically resembling Ku70-deficient A-EJ. In contrast, we find DNA-PKcs necessary in generating the near-exclusive MMEJ associated with Lig4 deficiency. Our study underscores DNA-PKcs in suppressing illegitimate chromosome rearrangement while also contributing to MMEJ in both species.


Asunto(s)
Aberraciones Cromosómicas , Reparación del ADN por Unión de Extremidades , Proteína Quinasa Activada por ADN , Animales , Humanos , Ratones , Línea Celular , ADN Ligasa (ATP)/genética , ADN Ligasa (ATP)/metabolismo , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Translocación Genética , Recombinación V(D)J
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA