Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Intervalo de año de publicación
1.
Cell Tissue Res ; 384(2): 287-299, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33511469

RESUMEN

Tau protein is of primary importance for neuronal homeostasis and when hyperphosphorylated (PP-Tau), it tends to aggregate in neurofibrillary tangles, as is the case with tauopathies, a class of neurodegenerative disorders. Reversible PP-Tau accumulation occurs in the brain of hibernating rodents and it was recently observed in rats (a non-hibernator) during synthetic torpor (ST), a pharmacological-induced torpor-like condition. To date, the expression of PP-Tau in the rat enteric nervous system (ENS) is still unknown. The present study immunohistochemically investigates the PP-Tau expression in the myenteric plexus of the ileum and colon of normothermic rats (CTRL) and during ST, focusing on the two major subclasses of enteric neurons, i.e., cholinergic and nitrergic.Results showed that both groups of rats expressed PP-Tau, with a significantly increased percentage of PP-Tau immunoreactive (IR) neurons in ST vs. CTRL. In all rats, the majority of PP-Tau-IR neurons were cholinergic. In ST rats, the percentage of PP-Tau-IR neurons expressing a nitrergic phenotype increased, although with no significant differences between groups. In addition, the ileum of ST rats showed a significant decrease in the percentage of nitrergic neurons. In conclusion, our findings suggest an adaptive response of ENS to very low core body temperatures, with changes involving PP-tau expression in enteric neurons, especially the ileal nitrergic subpopulation. In addition, the high presence of PP-Tau in cholinergic neurons, specifically, is very interesting and deserves further investigation. Altogether, these data strengthen the hypothesis of a common cellular mechanism triggered by ST, natural hibernation and tauopathies occurring in ENS neurons.


Asunto(s)
Colon/fisiopatología , Íleon/fisiopatología , Plexo Mientérico/metabolismo , Letargo/fisiología , Proteínas tau/metabolismo , Animales , Masculino , Fosforilación , Ratas , Ratas Sprague-Dawley
2.
Folia Morphol (Warsz) ; 80(1): 26-32, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32159839

RESUMEN

BACKGROUND: Oxaliplatin (OX) has been widely used for treatment of colorectal and other cancers. Adverse effect of OX and other anticancer agents on cognition have been reported, but studies on the effects of chemotherapy on brain structure are scarce. This study describes the morphometrical features of the hippocampus structures in rat following OX treatment using design-based stereological methods. MATERIALS AND METHODS: Ten male Wistar rats were randomised into two groups. The rats from OX group received 2.4 mg/kg OX in vehicle for 5 consecutive days every week for 2 weeks intraperitoneally. Controls received vehicle only. Cavalieri's method and the optical fractionator method were used for volume and neuron estimation, respectively. RESULTS: Cavalieri's method was used to estimate volume and showed that the volume of the hippocampus was significantly decreased in OX group (31.84 ± ± 1.24 mm3) compared with the vehicle control group (36.95 ± 3.48 mm3). The optical fractionator method was used to estimate neuron number and showed that the number of neurons in dentate gyrus, cornu ammonis 1 and 3 in OX group (8.147 ± 2.84 × 105, 4.257 ± 0.59 × 105 and 2.133 ± 0.22 × 105, respectively) did not differ from those of vehicle control group (7.36 ± 1.42 × 105, 3.521 ± ± 0.54 × 105 and 1.989 ± 0.46 × 105, respectively). CONCLUSIONS: These findings suggested that OX treatment induces loss of hippocampal volume without neuronal loss which might help to clarify the mechanism by which OX affects cognition and to improve preventive treatment strategies.


Asunto(s)
Antineoplásicos , Hipocampo , Animales , Masculino , Neuronas , Oxaliplatino , Ratas , Ratas Wistar
3.
Anat Histol Embryol ; 46(3): 240-248, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28120342

RESUMEN

This study described the morphological features of the Persian leopard (Panthera pardus saxicolor) tongue using light and scanning electron microscopy techniques. The keratinized filiform papillae were distributed all over the entire dorsal surface of the tongue and contained small processes. They were changed into a cylindrical shape in the body and conical shape in the root. The fungiform papillae were found on the apex and margin of the tongue. Few taste pores were observed on the dorsal surface of each papilla. The foliate papillae on the margins of the tongue were composed of several laminae and epithelial fissures. Taste buds were not seen within the non-keratinized epithelium. The vallate papillae were six in total and arranged in a "V" shape just rostral to the root. Each papilla was surrounded by a groove and pad. Taste buds were seen within their lateral walls. Lyssa was visible on the ventral surface of the tongue tip and was found as cartilaginous tissue surrounded by thin connective tissue fibres. The core of the tongue was composed of lingual glands, skeletal muscle and connective tissue. These glands were confined to the posterior portion of the tongue and were composed of many serous cells and a few mucous cells. The results of this study contributed to the knowledge of the morphological characteristics of the tongue of wild mammals and provided data for the comparison with other mammals.


Asunto(s)
Tejido Conectivo/anatomía & histología , Mucosa Bucal/anatomía & histología , Panthera/anatomía & histología , Glándulas Salivales Menores/anatomía & histología , Papilas Gustativas/anatomía & histología , Animales , Células Epiteliales , Masculino , Microscopía Electrónica de Rastreo , Lengua/anatomía & histología
4.
Cell Tissue Res ; 366(1): 13-22, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27230228

RESUMEN

Equine ileocolonic aganglionosis, which is also called lethal white foal syndrome (LWFS), is a severe congenital condition characterized by the unsuccessful colonization of neural crest progenitors in the caudal part of the small intestine and the entire large intestine. LWFS, which is attributable to a mutation in the endothelin receptor B gene, is the horse equivalent of Hirschsprung's disease in humans. Affected foals suffer from aganglionosis or hypoganglionosis of the enteric ganglia resulting in intestinal akinesia and colic. In other species with aganglionosis, fibers of extrinsic origin show an abnormal distribution pattern within the gut wall, but we have no information to date regarding this occurrence in horses. Our present aim is to investigate the distribution of extrinsic sympathetic and sensory neural fibers in LWFS, focusing on ileum and the pelvic flexure of the colon of two LWFS foals compared with a control subject. The sympathetic fibers were immunohistochemically identified with the markers tyrosine hydroxylase and dopamine beta-hydroxylase. The extrinsic sensory fibers were identified with the markers Substance P (SP) and calcitonin gene-related peptide (CGRP). Since SP and CGRP are also synthesized by subclasses of horse intramural neurons, LWFS represents a good model for the selective study of extrinsic fiber distribution. Affected foals showed large bundles of extrinsic fibers, compared with the control, as observed in Hirschsprung's disease. Furthermore, altered adrenergic pathways were observed, prominently in the pelvic flexure. The numbers of SP- and CGRP-immunoreactive fibers in the muscle, a target of enteric neurons, were dramatically reduced, whereas fibers deduced to be extrinsic sensory axons persisted around submucosal blood vessels. Fiber numbers in the mucosa were reduced. Thus, extrinsic innervation, contributing to modulate enteric functions, might also be affected during LWFS.


Asunto(s)
Enfermedad de Hirschsprung/patología , Enfermedades de los Caballos/patología , Íleon/inervación , Íleon/patología , Pelvis/inervación , Pelvis/patología , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Caballos , Masculino , Tirosina 3-Monooxigenasa/metabolismo
5.
Auton Neurosci ; 197: 25-33, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27189100

RESUMEN

Diabetes mellitus (DM) determines a wide array of severe clinical complications including gastrointestinal motility disorders. The present study investigates the effects of spontaneous DM on the intramural innervation and in particular on nitrergic neurons of the myenteric plexus (MP) of the canine gastric antrum and ileum. Specimens of antrum and ileum from eight control-dogs and five insulin-dependent DM-dogs were collected. MP neurons were immunohistochemically identified with the anti-HuC/HuD antibody, while nitrergic neurons were identified with the antibody anti-neuronal nitric oxide synthase (nNOS). The density of HuC/HuD-immunoreactive (IR) neurons was determined and the nitrergic neurons were quantified as a relative percentage, in consideration of the total number of HuC/HuD-IR neurons. Furthermore, the density of nitrergic fibers in the muscular layers was calculated. Data were expressed as mean±standard deviation. Compared to control-dogs, no significant differences resulted in the density of HuC/HuD-IR neurons in the antrum and ileum of DM-dogs; however, HuC/HuD-immunolabeling showed nuclear localization and fragmentation in DM-dogs. In the stomachs of control- and DM-dogs, the percentages of nitrergic neurons were 30±6% and 25±2%, respectively (P=0.112). In the ileum of the control-dogs, the percentage of nitrergic neurons was 29±5%, while in the DM-dogs, it was significantly reduced 19±5% (P=0.006). The density of nNOS-IR nervous fibers was meaningful reduced in either the tracts considered. Notably, the ganglia of DM-dogs showed also a thickening of the periganglionic connective tissue. These findings indicate that DM in dogs induce modification of the myenteric neurons and, in particular, of the nitrergic neuronal subpopulation.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Íleon/inervación , Neuronas/metabolismo , Neuronas Nitrérgicas/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Antro Pilórico/metabolismo , Estómago/inervación , Animales , Diabetes Mellitus Experimental/fisiopatología , Perros , Inmunohistoquímica/métodos , Plexo Mientérico/efectos de los fármacos , Plexo Mientérico/metabolismo
6.
Res Vet Sci ; 95(3): 846-53, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23969205

RESUMEN

The neurochemistry of enteric neurons differs among species of small laboratory rodents (guinea-pig, mouse, rat). In this study we characterized the phenotype of ileal myenteric plexus (MP) neuronal cells and fibers of the bank vole (Myodes glareolus), a common rodent living in Europe and in Northern Asia which is also employed in prion experimental transmission studies. Six neuronal markers were tested: choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), calbindin (CALB), calcitonin gene-related peptide (CGRP) and substance P (SP), along with HuC/D as a pan-neuronal marker. Neurons expressing ChAT- and nNOS-immunoreactivity (IR) were 36 ± 12% and 24 ± 5%, respectively. Those expressing CGRP-, SP- and CALB-IR were 3 ± 3%, 21 ± 5% and 6 ± 2%, respectively. Therefore, bank vole MPs differ consistently from murine MPs in neurons expressing CGRP-, SP- and CALB-IR. These data may contribute to define the prion susceptibility of neuron cell populations residing within ileal MPs from bank voles, along with their morpho-functional alterations following oral experimental prion challenge.


Asunto(s)
Arvicolinae/metabolismo , Plexo Mientérico/metabolismo , Animales , Arvicolinae/fisiología , Calbindinas/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Colina O-Acetiltransferasa/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente Indirecta/veterinaria , Masculino , Microscopía Fluorescente/veterinaria , Plexo Mientérico/fisiología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Sustancia P/metabolismo
7.
Anat Histol Embryol ; 42(3): 201-12, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22943835

RESUMEN

Most investigations related to the characterisation of the enteric nervous system (ENS) are pivoted on the intestine of small rodents, but few studies are available on the ENS of wild or 'unconventional' rodents. Anti-PGP 9.5 and anti-Hu antibodies were utilised to recognise the distribution pattern of neuronal cell bodies and fibres of the ileum of the Persian squirrel (Sciurus anomalus) ENS. The percentages of subclasses of enteric neurones in the total neuronal population were investigated by neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT), calcitonin gene-related peptide (CGRP), substance P (SP), and calbindin (CALB). Myenteric plexus (MP) and submucosal plexus (SMP) neurones showing nNOS immunoreactivity (IR) were 41±4% and 11±6%, respectively, whereas cells expressing ChAT-IR were 56±9% and 74±16%, respectively. nNOS-IR was co-expressed by 21±2% and 9±4% of the MP and SMP cholinergic neurones, respectively, whereas the nNOS-IR MP and SMP neurones co-expressing ChAT-IR were 86±6% and 89±2%, respectively. CGRP-IR and SP-IR were expressed, respectively, by 13±5% and 6±3% of MP and 18±2% and 2±2% of SMP neurones. CALB-IR was expressed by 22±8% and 56±14% of MP and SMP neurones, respectively. MP and SMP cholinergic neurones co-expressed nNOS-IR (21±2% and 9±4%, respectively) and a very high percentage of nNOS-IR neurones showed ChAT-IR (86±6% and 89±2%, respectively). MP and SMP CALB-IR neurones co-expressed ChAT-IR (100% and 63±11%, respectively) and CGRP-IR (89±5% and 26±7%, respectively). Our data might contribute to the neuroanatomical knowledge of the gastrointestinal tract in exotic mammals and provide a comparison with the available data on other mammals.


Asunto(s)
Íleon/inervación , Sciuridae/anatomía & histología , Animales , Anticuerpos , Calbindinas/genética , Calbindinas/metabolismo , Péptido Relacionado con Gen de Calcitonina/genética , Péptido Relacionado con Gen de Calcitonina/metabolismo , Regulación de la Expresión Génica , Inmunohistoquímica , Neuronas/clasificación , Neuronas/metabolismo , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Sustancia P/genética , Sustancia P/metabolismo
8.
Int. j. morphol ; 30(2): 524-530, jun. 2012. ilus
Artículo en Inglés | LILACS | ID: lil-651824

RESUMEN

The persian squirrel (Sciurus anomalus) is the only member of the Sciuridae family found in the Middle East. It is herbivorous, feeding mostly on pine acorns and other seeds and fruits. It is a wild animal nesting in forest trees, although it is frequently found close to city gardens and parks. As Persian squirrels are also found in homes as "companion animals", veterinarian assistance may be sometimes required; this is a good reason to gain more specific knowledge of the anatomical features of this animal. Due to the scantiness of relevant literature, we carried out this study with the aim to provide further information on the topography and gross anatomy of its abdominal gastrointestinal tract (GIT). Seven animals of this species were utilized to measure the length, content weight and area surface of the relative segments of the abdominal GIT. The stomach is unilocular, lined with glandular epithelium; the small intestine is divided into duodenum, jejunum and ileum. The cecum is situated on the right side of the abdominal cavity and lacks the vermiform appendix observed in some rodents. The ascending colon is extensive, consisting of two loops and two straight parts forming a unique topographic arrangement, closely resembling the ascending colon of the horse. The transverse colon connects the ascending and the descending colon located on the left side of the abdominal cavity, and shows a distinct sigmoid flexure before entering the pelvic cavity. Overall, the in situ examination and the relative measurements of the various parts of the abdominal GIT suggest that the ascending colon is the main fermentation chamber in the Persian Squirrel.


La ardilla es el único miembro de la familia de los Sciuridae que se encuentra en el Medio Oriente. Es un herbívoro, come semillas, principalmente de pino, y fruta. Vive mayormente en el bosque en estado salvaje, aunque a veces se puede encontrar en las ciudades, en parques y jardines. Las ardillas persianas tambien se tienen en casas como mascotas y algunas veces es necesaria la atención del veterinario. Esta es una buena razón para conocer más profundamente sus características anatómicas. Teniendo en cuenta la escasa bibliografía existente a cerca de este animal, el objetivo de este estudio fue aportar nueva información sobre la anatomía topográfica y mascroscópica del tracto abdominal gastrointestinal (GIT) de la ardilla. Siete animales de esta especie han sido utilizados para medir el largo, el peso y el área de la superficie de los segmentos del GIT. El estómago es unilocular, alineado con epitelio glandular; el pequeño intestino está dividido en duodeno, jejuno e ileo. El ciego está localizado en la parte derecha de la cavidad abdominal y le falta el apéndice vermiforme que poseen los roedores. El colon ascendente es extenso, constituido de dos partes curvas y dos rectilíneas que forman una única dispoción topográfica cerrada como el colon ascendente en el caballo. El colon trasverso, que conecta el ascendente y el descendente, está localizado en el lado izquierdo de la cavidad abdominal y muestra una clara flexión sigmoide antes de entrar en la cavidad pélvica. En resumen, el examen in situ y las relativas medidas de las varias partes del GIT sugieren que el colon ascendente es la principal "cámara" de fermentación en la ardilla persiana.


Asunto(s)
Animales , Abdomen/anatomía & histología , Sciuridae/anatomía & histología , Tracto Gastrointestinal/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...