Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chromosome Res ; 31(4): 30, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37812264

RESUMEN

Structural karyotype changes result from ectopic recombination events frequently associated with repetitive DNA. Although most Phaseolus species present relatively stable karyotypes with 2n = 22 chromosomes, the karyotypes of species of the Leptostachyus group show high rates of structural rearrangements, including a nested chromosome fusion that led to the dysploid chromosome number of the group (2n = 20). We examined the roles of repetitive landscapes in the rearrangements of species of the Leptostachyus group using genome-skimming data to characterize the repeatome in a range of Phaseolus species and compared them to species of that group (P. leptostachyus and P. macvaughii). LTR retrotransposons, especially the Ty3/gypsy lineage Chromovirus, were the most abundant elements in the genomes. Differences in the abundance of Tekay, Retand, and SIRE elements between P. macvaughii and P. leptostachyus were reflected in their total amounts of Ty3/gypsy and Ty1/copia. The satellite DNA fraction was the most divergent among the species, varying both in abundance and distribution, even between P. leptostachyus and P. macvaughii. The rapid turnover of repeats in the Leptostachyus group may be associated with the several rearrangements observed.


Asunto(s)
Phaseolus , Phaseolus/genética , ADN de Plantas/genética , ADN Satélite/genética , Retroelementos , Filogenia , Genoma de Planta , Evolución Molecular
2.
Methods Mol Biol ; 2703: 211-225, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37646948

RESUMEN

Chromosome numbers have been used in plant taxonomy, and they are still fundamental for taxon delimitation and genome evolution studies. South America is one of the most diverse continents in terms of plant species and there is a considerable number of species not yet analyzed. Accumulated knowledge about plant chromosome numbers has been compiled from online databases, and here we present an overview. The CCDB is one of the largest plant cytological databases and includes data for around 18% of known vascular plants in the world. In this work, we review the information contained in CCDB and in three databases with exclusive information for South America. At present, the three existing databases comprise information on around 1800 plant taxa related to specific regions, countries, or biomes. Efforts are necessary to expand cytological knowledge and to collect all the available information in a plant chromosome database for this continent.


Asunto(s)
Cromosomas de las Plantas , Tracheophyta , Cromosomas de las Plantas/genética , Bases de Datos Factuales , Ecosistema , América del Sur
3.
Plant Genome ; 14(3): e20117, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34296827

RESUMEN

The genus Passiflora comprises a large group of plants popularly known as passionfruit, much appreciated for their exotic flowers and edible fruits. The species (∼500) are morphologically variable (e.g., growth habit, size, and color of flowers) and are adapted to distinct tropical ecosystems. In this study, we generated the genome of the wild diploid species Passiflora organensis Gardner by adopting a hybrid assembly approach. Passiflora organensis has a small genome of 259 Mbp and a heterozygosity rate of 81%, consistent with its reproductive system. Most of the genome sequences could be integrated into its chromosomes with cytogenomic markers (satellite DNA) as references. The repeated sequences accounted for 58.55% of the total DNA analyzed, and the Tekay lineage was the prevalent retrotransposon. In total, 25,327 coding genes were predicted. Passiflora organensis retains 5,609 singletons and 15,671 gene families. We focused on the genes potentially involved in the locus determining self-incompatibility and the MADS-box gene family, allowing us to infer expansions and contractions within specific subfamilies. Finally, we recovered the organellar DNA. Structural rearrangements and two mitoviruses, besides relics of other mobile elements, were found in the chloroplast and mt-DNA molecules, respectively. This study presents the first draft genome assembly of a wild Passiflora species, providing a valuable sequence resource for genomic and evolutionary studies on the genus, and support for breeding cropped passionfruit species.


Asunto(s)
Passiflora , Diploidia , Ecosistema , Passiflora/genética , Fitomejoramiento , Retroelementos
4.
Planta ; 253(4): 86, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33792791

RESUMEN

MAIN CONCLUSIONS: While two lineages of retrotransposons were more abundant in larger Passiflora genomes, the satellitome was more diverse and abundant in the smallest genome analysed. Repetitive sequences are ubiquitous and fast-evolving elements responsible for size variation and large-scale organization of plant genomes. Within Passiflora genus, a tenfold variation in genome size, not attributed to polyploidy, is known. Here, we applied a combined in silico and cytological approach to study the organization and diversification of repetitive elements in three species of this genus representing its known range in genome size variation. Sequences were classified in terms of type and repetitiveness and the most abundant were mapped to chromosomes. We identified long terminal repeat (LTR) retrotransposons as the most abundant elements in the three genomes, showing a considerable variation among species. Satellite DNAs (satDNAs) were less representative, but highly diverse between subgenera. Our results clearly confirm that the largest genome species (Passiflora quadrangularis) presents a higher accumulation of repetitive DNA sequences, specially Angela and Tekay elements, making up most of its genome. Passiflora cincinnata, with intermediate genome and from the same subgenus, showed similarity with P. quadrangularis regarding the families of repetitive DNA sequences, but in different proportions. On the other hand, Passiflora organensis, the smallest genome, from a different subgenus, presented greater diversity and the highest proportion of satDNA. Altogether, our data indicates that while large genomes evolved by an accumulation of retrotransposons, the smallest genome known for the genus has evolved by diversification of different repeat types, particularly satDNAs.


Asunto(s)
ADN Satélite/genética , Genoma de Planta , Passiflora/genética , Retroelementos , Evolución Molecular , Variación Genética , Filogenia
5.
Planta ; 252(4): 49, 2020 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-32918627

RESUMEN

MAIN CONCLUSION: Cytogenomic characterization of Erythrostemon hughesii reveals a heterogeneity of repeats in its subtelomeric heterochromatin. Comparative analyses with other Caesalpinia group species reveal a significant reduction in the abundance of Ty3-gypsy/Chromovirus Tekay retrotransposons during its evolution. In numerically stable karyotypes, repetitive DNA variability is one of the main causes of genome and chromosome variation and evolution. Species from the Caesalpinia group (Leguminosae) are karyotypically characterized by 2n = 24, with small chromosomes and highly variable CMA+ heterochromatin banding patterns that correlate with environmental variables. Erythrostemon hughesii differs from other species of the group examined to date for having subtelomeric CMA+ bands; this contrasts with most species in the group which have proximal bands. Here we analyse the repeatome of E. hughesii using genome skimming and chromosomal mapping approaches to characterize the identity of the most abundant repetitive elements and their physical location. The repetitive fraction of E. hughesii comprises 28.73% of the genome. The most abundant elements were retrotransposons (RT) with long terminal repeats (LTR-RT; 9.76%) and satellite DNAs (7.83%). Within the LTR-RTs, the most abundant lineages were: Ty1/copia-Ale (1%), Ty3/gypsy CRM (0.88%) and Ty3/gypsy Athila (0.75%). Using fluorescent in situ hybridization four satellite DNAs and several LTR-RT elements were shown to be present in most subtelomeric CMA+ bands. These results highlight how the repeatome in E. hughesii, a species from Oaxaca state in Mexico, is clearly distinct from Northeast Brazilian species of the Caesalpinia group, mainly due to its high diversity of repeats in its subtelomeric heterochromatic bands and low amount of LTR-RT Ty3/gypsy-Tekay elements. Comparative sequence analysis of Tekay elements from different species is congruent with a clade-specific origin of this LTR-RT after the divergence of the Caesalpinia group. We hypothesize that repeat-rich heterochromatin may play a role in leading to faster genomic divergence between individuals, increasing speciation and diversification.


Asunto(s)
Caesalpinia , Variación Genética , Genoma de Planta , Heterocromatina , Brasil , Caesalpinia/genética , Evolución Molecular , Genoma de Planta/genética , Heterocromatina/genética , Hibridación Fluorescente in Situ , México , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...