Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7489, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980336

RESUMEN

Bacterial chromosomes are dynamically and spatially organised within cells. In slow-growing Escherichia coli, the chromosomal terminus is initially located at the new pole and must therefore migrate to midcell during replication to reproduce the same pattern in the daughter cells. Here, we use high-throughput time-lapse microscopy to quantify this transition, its timing and its relationship to chromosome segregation. We find that terminus centralisation is a rapid discrete event that occurs ~25 min after initial separation of duplicated origins and ~50 min before the onset of bulk nucleoid segregation but with substantial variation between cells. Despite this variation, its movement is tightly coincident with the completion of origin segregation, even in the absence of its linkage to the divisome, suggesting a coupling between these two events. Indeed, we find that terminus centralisation does not occur if origin segregation away from mid-cell is disrupted, which results in daughter cells having an inverted chromosome organisation. Overall, our study quantifies the choreography of origin-terminus positioning and identifies an unexplored connection between these loci, furthering our understanding of chromosome segregation in this bacterium.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Cromosomas , Proteínas de Escherichia coli/genética , Cromosomas Bacterianos/genética , Segregación Cromosómica , Movimiento Celular , Replicación del ADN , Origen de Réplica/genética
2.
Biophys J ; 122(9): 1577-1585, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36966362

RESUMEN

Fluorescent microscopy is the primary method to study DNA organization within cells. However, the variability and low signal/noise commonly associated with live-cell time-lapse imaging challenges quantitative measurements. In particular, obtaining quantitative or mechanistic insight often depends on the accurate tracking of fluorescent particles. Here, we present ★Track, an inference method that determines the most likely temporal tracking of replicating intracellular particles such DNA loci while accounting for missing, merged, and spurious detections. It allows the accurate prediction of particle copy numbers as well as the timing of replication events. We demonstrate ★Track's abilities and gain new insight into plasmid copy number control and the volume dependence of bacterial chromosome replication initiation. By enabling the accurate tracking of DNA loci, ★Track can help to uncover the mechanistic principles of chromosome organization and dynamics across a range of systems.


Asunto(s)
Replicación del ADN , ADN , ADN/genética , Microscopía , Cromosomas Bacterianos/genética
3.
Elife ; 102021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33856342

RESUMEN

Translesion synthesis (TLS) is a highly conserved mutagenic DNA lesion tolerance pathway, which employs specialized, low-fidelity DNA polymerases to synthesize across lesions. Current models suggest that activity of these polymerases is predominantly associated with ongoing replication, functioning either at or behind the replication fork. Here we provide evidence for DNA damage-dependent function of a specialized polymerase, DnaE2, in replication-independent conditions. We develop an assay to follow lesion repair in non-replicating Caulobacter and observe that components of the replication machinery localize on DNA in response to damage. These localizations persist in the absence of DnaE2 or if catalytic activity of this polymerase is mutated. Single-stranded DNA gaps for SSB binding and low-fidelity polymerase-mediated synthesis are generated by nucleotide excision repair (NER), as replisome components fail to localize in the absence of NER. This mechanism of gap-filling facilitates cell cycle restoration when cells are released into replication-permissive conditions. Thus, such cross-talk (between activity of NER and specialized polymerases in subsequent gap-filling) helps preserve genome integrity and enhances survival in a replication-independent manner.


Asunto(s)
Proteínas Bacterianas/metabolismo , Caulobacter crescentus/enzimología , Roturas del ADN de Cadena Simple , Reparación del ADN , Replicación del ADN , ADN Bacteriano/biosíntesis , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas Bacterianas/genética , Caulobacter crescentus/genética , Caulobacter crescentus/crecimiento & desarrollo , ADN Bacteriano/genética , ADN Polimerasa Dirigida por ADN/genética , Regulación Bacteriana de la Expresión Génica , Viabilidad Microbiana , Mutagénesis
4.
FEMS Microbiol Lett ; 365(22)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30304479

RESUMEN

The factors contributing to antibiotic resistance in bacteria are an important area of study. Sodium salicylate (NaSal), a non-steroidal anti-inflammatory drug (NSAID), increases antibiotic resistance by inducing the expression of MarA, a transcription factor, which increases the AcrAB-TolC efflux pump. MarA is a substrate of Lon protease and the Δlon strain displays a high degree of antibiotic resistance. This study was initiated to identify commonly used NSAIDs that may induce antibiotic resistance and to compare their efficacies with NaSal and acetyl salicylic acid (ASA). Quantitative real-time expression analysis revealed induction of marA and acrB by NaSal, ASA, acetaminophen (APAP) and ibuprofen. Further, dose studies demonstrated that NaSal and ASA induce resistance at ∼2 mM while APAP and ibuprofen induce resistance at ∼5-10 mM. To dissect the roles of key molecules, atomic force microscopy and functional studies were performed using WT, Δlon, ΔmarA, ΔacrB, ΔlonΔmarA and ΔlonΔacrB strains. The induction of antibiotic resistance by NaSal, ASA and APAP is relatively higher and is partly dependent on marA, whereas ibuprofen which induces lower antibiotic resistance shows complete marA dependence. Notably, NaSal, ASA, APAP and ibuprofen induce antibiotic resistance in an acrB-dependent manner. The possible significance of some NSAIDs in inducing antibiotic resistance is discussed.


Asunto(s)
Acetaminofén/farmacología , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios/farmacología , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Ibuprofeno/farmacología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas de Unión al ADN/genética , Farmacorresistencia Bacteriana/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Microscopía de Fuerza Atómica , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteasa La/genética , Proteasa La/metabolismo , Salicilato de Sodio , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA