Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 635: 552-561, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36608391

RESUMEN

Poly(N-isopropylacrylamide) (PNIPAM) microgels and PNIPAM colloidal shells attract continuous strong interest due to their thermoresponsive behavior, as their size and properties can be tuned by temperature. The direct single particle observation and characterization of pure, unlabeled PNIPAM microgels in their native aqueous environment relies on imaging techniques that operate either at interfaces or in cryogenic conditions, thus limiting the observation of their dynamic nature. Liquid Cell (Scanning) Transmission Electron Microscopy (LC-(S) TEM) imaging allows the characterization of materials and dynamic processes such as nanoparticle growth, etching, and diffusion, at nanometric resolution in liquids. Here we show that via a facile post-synthetic in situ polymer labelling step with high-contrast marker core-shell Au@SiO2 nanoparticles (NPs) it is possible to determine the full volume of PNIPAM microgels in water. The labelling allowed for the successful characterization of the thermoresponsive behavior of PNIPAM microgels and core shell silica@PNIPAM hybrid microgels, as well as the co-nonsolvency of PNIPAM in aqueous alcoholic solutions. The interplay between electron beam irradiation and PNIPAM systems in water resulted in irreversible shrinkage due to beam induced water radiolysis products, which in turn also affected the thermoresponsive behavior of PNIPAM. The addition of 2-propanol as radical scavenger improved PNIPAM stability in water under electron beam irradiation.

2.
ACS Appl Nano Mater ; 4(2): 1136-1148, 2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33763630

RESUMEN

The recent development of liquid cell (scanning) transmission electron microscopy (LC-(S)TEM) has opened the unique possibility of studying the chemical behavior of nanomaterials down to the nanoscale in a liquid environment. Here, we show that the chemically induced etching of three different types of silica-based silica nanoparticles can be reliably studied at the single particle level using LC-(S)TEM with a negligible effect of the electron beam, and we demonstrate this method by successfully monitoring the formation of silica-based heterogeneous yolk-shell nanostructures. By scrutinizing the influence of electron beam irradiation, we show that the cumulative electron dose on the imaging area plays a crucial role in the observed damage and needs to be considered during experimental design. Monte-Carlo simulations of the electron trajectories during LC-(S)TEM experiments allowed us to relate the cumulative electron dose to the deposited energy on the particles, which was found to significantly alter the silica network under imaging conditions of nanoparticles. We used these optimized LC-(S)TEM imaging conditions to systematically characterize the wet etching of silica and metal(oxide)-silica core-shell nanoparticles with cores of gold and iron oxide, which are representative of many other core-silica-shell systems. The LC-(S)TEM method reliably reproduced the etching patterns of Stöber, water-in-oil reverse microemulsion (WORM), and amino acid-catalyzed silica particles that were reported before in the literature. Furthermore, we directly visualized the formation of yolk-shell structures from the wet etching of Au@Stöber silica and Fe3O4@WORM silica core-shell nanospheres.

3.
J Colloid Interface Sci ; 566: 202-210, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32006816

RESUMEN

Assembly of plasmonic nanoparticle clusters having hotspots in a specific space is an effective way to efficiently utilize their plasmonic properties. In the assembly, however, bulk-like aggregates of the nanoparticles are readily formed by strong van der Waals forces, inducing a decrease of the properties. The present work proposes an advanced method to avoid aggregation of the clusters by encapsulating into a confined space of hollow silica interior. Hollow spheres incorporating gold nanoparticle clusters were synthesized by a surface-protected etching process. The observation of inner nanoparticles with liquid cell transmission electron microscopy experimentally proved that the nanoparticles moved as a cluster instead of as dispersed nanoparticles within the water-filled hollow compartment. The hollow spheres incorporating the nanoparticle clusters were assembled in the vicinity of electrodes by application of an external AC electric field, resulting in the enhancement of Raman intensities of probe molecules. The nanoparticle-cluster-containing hollow spheres were redispersed when the electric field was turned off, showing that the hollow silica spheres can act as a physical barrier to avoid the cluster aggregation. The Raman intensities were reversibly changed by switching the electric field on and off to control the assembled or dispersed states of the hollow spheres.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...