Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bone ; 181: 117031, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38311304

RESUMEN

INTRODUCTION: Conventional bone imaging methods primarily use X-ray techniques to assess bone mineral density (BMD), focusing exclusively on the mineral phase. This approach lacks information about the organic phase and bone water content, resulting in an incomplete evaluation of bone health. Recent research highlights the potential of ultrashort echo time magnetic resonance imaging (UTE MRI) to measure cortical porosity and estimate BMD based on signal intensity. UTE MRI also provides insights into bone water distribution and matrix organization, enabling a comprehensive bone assessment with a single imaging technique. Our study aimed to establish quantifiable UTE MRI-based biomarkers at clinical field strength to estimate BMD and microarchitecture while quantifying bound water content and matrix organization. METHODS: Femoral bones from 11 cadaveric specimens (n = 4 males 67-92 yrs of age, n = 7 females 70-95 yrs of age) underwent dual-echo UTE MRI (3.0 T, 0.45 mm resolution) with different echo times and high resolution peripheral quantitative computed tomography (HR-pQCT) imaging (60.7 µm voxel size). Following registration, a 4.5 mm HR-pQCT region of interest was divided into four quadrants and used across the multi-modal images. Statistical analysis involved Pearson correlation between UTE MRI porosity index and a signal-intensity technique used to estimate BMD with corresponding HR-pQCT measures. UTE MRI was used to calculate T1 relaxation time and a novel bound water index (BWI), compared across subregions using repeated measures ANOVA. RESULTS: The UTE MRI-derived porosity index and signal-intensity-based estimated BMD correlated with the HR-pQCT variables (porosity: r = 0.73, p = 0.006; BMD: r = 0.79, p = 0.002). However, these correlations varied in strength when we examined each of the four quadrants (subregions, r = 0.11-0.71). T1 relaxometry and the BWI exhibited variations across the four subregions, though these differences were not statistically significant. Notably, we observed a strong negative correlation between T1 relaxation time and the BWI (r = -0.87, p = 0.0006). CONCLUSION: UTE MRI shows promise for being an innocuous method for estimating cortical porosity and BMD parameters while also giving insight into bone hydration and matrix organization. This method offers the potential to equip clinicians with a more comprehensive array of imaging biomarkers to assess bone health without the need for invasive or ionizing procedures.


Asunto(s)
Hueso Cortical , Imagen por Resonancia Magnética , Masculino , Femenino , Humanos , Niño , Estudios de Factibilidad , Microtomografía por Rayos X , Hueso Cortical/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Agua
2.
Comput Biol Med ; 149: 105806, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35994932

RESUMEN

In the Coronavirus disease-2019 (COVID-19) pandemic, for fast and accurate diagnosis of a large number of patients, besides traditional methods, automated diagnostic tools are now extremely required. In this paper, a deep convolutional neural network (CNN) based scheme is proposed for automated accurate diagnosis of COVID-19 from lung computed tomography (CT) scan images. First, for the automated segmentation of lung regions in a chest CT scan, a modified CNN architecture, namely SKICU-Net is proposed by incorporating additional skip interconnections in the U-Net model that overcome the loss of information in dimension scaling. Next, an agglomerative hierarchical clustering is deployed to eliminate the CT slices without significant information. Finally, for effective feature extraction and diagnosis of COVID-19 and pneumonia from the segmented lung slices, a modified DenseNet architecture, namely P-DenseCOVNet is designed where parallel convolutional paths are introduced on top of the conventional DenseNet model for getting better performance through overcoming the loss of positional arguments. Outstanding performances have been achieved with an F1 score of 0.97 in the segmentation task along with an accuracy of 87.5% in diagnosing COVID-19, common pneumonia, and normal cases. Significant experimental results and comparison with other studies show that the proposed scheme provides very satisfactory performances and can serve as an effective diagnostic tool in the current pandemic.


Asunto(s)
COVID-19 , COVID-19/diagnóstico por imagen , Prueba de COVID-19 , Humanos , Pulmón/diagnóstico por imagen , Redes Neurales de la Computación , Pandemias , Tomografía Computarizada por Rayos X/métodos
3.
Health Inf Sci Syst ; 9(1): 28, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34257953

RESUMEN

Lung Ultrasound (LUS) images are considered to be effective for detecting Coronavirus Disease (COVID-19) as an alternative to the existing reverse transcription-polymerase chain reaction (RT-PCR)-based detection scheme. However, the recent literature exhibits a shortage of works dealing with LUS image-based COVID-19 detection. In this paper, a spectral mask enhancement (SpecMEn) scheme is introduced along with a histogram equalization pre-processing stage to reduce the noise effect in LUS images prior to utilizing them for feature extraction. In order to detect the COVID-19 cases, we propose to utilize the SpecMEn pre-processed LUS images in the deep learning (DL) models (namely the SpecMEn-DL method), which offers a better representation of some characteristics features in LUS images and results in very satisfactory classification performance. The performance of the proposed SpecMEn-DL technique is appraised by implementing some state-of-the-art DL models and comparing the results with related studies. It is found that the use of the SpecMEn scheme in DL techniques offers an average increase in accuracy and F 1 score of 11 % and 11.75 % , respectively, at the video-level. Comprehensive analysis and visualization of the intermediate steps manifest a very satisfactory detection performance creating a flexible and safe alternative option for the clinicians to get assistance while obtaining the immediate evaluation of the patients.

4.
Comput Biol Med ; 132: 104296, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33684688

RESUMEN

The COVID-19 pandemic has become one of the biggest threats to the global healthcare system, creating an unprecedented condition worldwide. The necessity of rapid diagnosis calls for alternative methods to predict the condition of the patient, for which disease severity estimation on the basis of Lung Ultrasound (LUS) can be a safe, radiation-free, flexible, and favorable option. In this paper, a frame-based 4-score disease severity prediction architecture is proposed with the integration of deep convolutional and recurrent neural networks to consider both spatial and temporal features of the LUS frames. The proposed convolutional neural network (CNN) architecture implements an autoencoder network and separable convolutional branches fused with a modified DenseNet-201 network to build a vigorous, noise-free classification model. A five-fold cross-validation scheme is performed to affirm the efficacy of the proposed network. In-depth result analysis shows a promising improvement in the classification performance by introducing the Long Short-Term Memory (LSTM) layers after the proposed CNN architecture by an average of 7-12%, which is approximately 17% more than the traditional DenseNet architecture alone. From an extensive analysis, it is found that the proposed end-to-end scheme is very effective in detecting COVID-19 severity scores from LUS images.


Asunto(s)
COVID-19 , Humanos , Pulmón/diagnóstico por imagen , Redes Neurales de la Computación , Pandemias , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...