Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Am J Med Genet C Semin Med Genet ; : e32089, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884529

RESUMEN

Blepharophimosis with intellectual disability (BIS) is a recently recognized disorder distinct from Nicolaides-Baraister syndrome that presents with distinct facial features of blepharophimosis, developmental delay, and intellectual disability. BIS is caused by pathogenic variants in SMARCA2, that encodes the catalytic subunit of the superfamily II helicase group of the BRG1 and BRM-associated factors (BAF) forming the BAF complex, a chromatin remodeling complex involved in transcriptional regulation. Individuals bearing variants within the bipartite nuclear localization (BNL) signal domain of ADNP present with the neurodevelopmental disorder known as Helsmoortel-Van Der Aa Syndrome (HVDAS). Distinct DNA methylation profiles referred to as episignatures have been reported in HVDAS and BAF complex disorders. Due to molecular interactions between ADNP and BAF complex, and an overlapping craniofacial phenotype with narrowing of the palpebral fissures in a subset of patients with HVDAS and BIS, we hypothesized the possibility of a common phenotype-specific episignature. A distinct episignature was shared by 15 individuals with BIS-causing SMARCA2 pathogenic variants and 12 individuals with class II HVDAS caused by truncating pathogenic ADNP variants. This represents first evidence of a sensitive phenotype-specific episignature biomarker shared across distinct genetic conditions that also exhibit unique gene-specific episignatures.

2.
HGG Adv ; 5(3): 100309, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38751117

RESUMEN

Analysis of genomic DNA methylation by generating epigenetic signature profiles (episignatures) is increasingly being implemented in genetic diagnosis. Here we report our experience using episignature analysis to resolve both uncomplicated and complex cases of neurodevelopmental disorders (NDDs). We analyzed 97 NDDs divided into (1) a validation cohort of 59 patients with likely pathogenic/pathogenic variants characterized by a known episignature and (2) a test cohort of 38 patients harboring variants of unknown significance or unidentified variants. The expected episignature was obtained in most cases with likely pathogenic/pathogenic variants (53/59 [90%]), a revealing exception being the overlapping profile of two SMARCB1 pathogenic variants with ARID1A/B:c.6200, confirmed by the overlapping clinical features. In the test cohort, five cases showed the expected episignature, including (1) novel pathogenic variants in ARID1B and BRWD3; (2) a deletion in ATRX causing MRXFH1 X-linked mental retardation; and (3) confirmed the clinical diagnosis of Cornelia de Lange (CdL) syndrome in mutation-negative CdL patients. Episignatures analysis of the in BAF complex components revealed novel functional protein interactions and common episignatures affecting homologous residues in highly conserved paralogous proteins (SMARCA2 M856V and SMARCA4 M866V). Finally, we also found sex-dependent episignatures in X-linked disorders. Implementation of episignature profiling is still in its early days, but with increasing utilization comes increasing awareness of the capacity of this methodology to help resolve the complex challenges of genetic diagnoses.

3.
HGG Adv ; 5(3): 100289, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38571311

RESUMEN

Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder caused by pathogenic variants in TCF4, leading to intellectual disability, specific morphological features, and autonomic nervous system dysfunction. Epigenetic dysregulation has been implicated in PTHS, prompting the investigation of a DNA methylation (DNAm) "episignature" specific to PTHS for diagnostic purposes and variant reclassification and functional insights into the molecular pathophysiology of this disorder. A cohort of 67 individuals with genetically confirmed PTHS and three individuals with intellectual disability and a variant of uncertain significance (VUS) in TCF4 were studied. The DNAm episignature was developed with an Infinium Methylation EPIC BeadChip array analysis using peripheral blood cells. Support vector machine (SVM) modeling and clustering methods were employed to generate a DNAm classifier for PTHS. Validation was extended to an additional cohort of 11 individuals with PTHS. The episignature was assessed in relation to other neurodevelopmental disorders and its specificity was examined. A specific DNAm episignature for PTHS was established. The classifier exhibited high sensitivity for TCF4 haploinsufficiency and missense variants in the basic-helix-loop-helix domain. Notably, seven individuals with TCF4 variants exhibited negative episignatures, suggesting complexities related to mosaicism, genetic factors, and environmental influences. The episignature displayed degrees of overlap with other related disorders and biological pathways. This study defines a DNAm episignature for TCF4-related PTHS, enabling improved diagnostic accuracy and VUS reclassification. The finding that some cases scored negatively underscores the potential for multiple or nested episignatures and emphasizes the need for continued investigation to enhance specificity and coverage across PTHS-related variants.

4.
Curr Oncol ; 31(4): 1762-1773, 2024 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-38668037

RESUMEN

Myelodysplastic neoplasms (MDS) with ring sideroblasts (RS) are diagnosed via bone marrow aspiration in the presence of either (i) ≥15% RS or (ii) 5-14% RS and an SF3B1 mutation. In the MEDALIST trial and in an interim analysis of the COMMANDS trial, lower-risk MDS-RS patients had decreased transfusion dependency with luspatercept treatment. A total of 6817 patients with suspected hematologic malignancies underwent molecular testing using a next-generation-sequencing-based genetic assay and 395 MDS patients, seen at our centre from 1 January 2018 to 31 May 2023, were reviewed. Of these, we identified 39 evaluable patients as having lower-risk MDS with SF3B1 mutations: there were 20 (51.3%) males and 19 (48.7%) females, with a median age of 77 years (range of 57 to 92). Nineteen (48.7%) patients had an isolated SF3B1 mutation with a mean variant allele frequency of 35.2% +/- 8.1%, ranging from 7.4% to 46.0%. There were 29 (74.4%) patients with ≥15% RS, 6 (15.4%) with 5 to 14% RS, one (2.6%) with 1% RS, and 3 (7.7%) with no RS. Our study suggests that a quarter of patients would be missed based on the morphologic criterion of only using RS greater than 15% and supports the revised 2022 definitions of the World Health Organization (WHO) and International Consensus Classification (ICC), which shift toward molecularly defined subtypes of MDS and appropriate testing.


Asunto(s)
Mutación , Síndromes Mielodisplásicos , Fosfoproteínas , Factores de Empalme de ARN , Organización Mundial de la Salud , Humanos , Factores de Empalme de ARN/genética , Masculino , Femenino , Anciano , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/clasificación , Persona de Mediana Edad , Estudios Retrospectivos , Anciano de 80 o más Años , Fosfoproteínas/genética , Anemia Sideroblástica/genética
5.
HGG Adv ; 5(3): 100287, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553851

RESUMEN

CREB-binding protein (CBP, encoded by CREBBP) and its paralog E1A-associated protein (p300, encoded by EP300) are involved in histone acetylation and transcriptional regulation. Variants that produce a null allele or disrupt the catalytic domain of either protein cause Rubinstein-Taybi syndrome (RSTS), while pathogenic missense and in-frame indel variants in parts of exons 30 and 31 cause phenotypes recently described as Menke-Hennekam syndrome (MKHK). To distinguish MKHK subtypes and define their characteristics, molecular and extended clinical data on 82 individuals (54 unpublished) with variants affecting CBP (n = 71) or p300 (n = 11) (NP_004371.2 residues 1,705-1,875 and NP_001420.2 residues 1,668-1,833, respectively) were summarized. Additionally, genome-wide DNA methylation profiles were assessed in DNA extracted from whole peripheral blood from 54 individuals. Most variants clustered closely around the zinc-binding residues of two zinc-finger domains (ZZ and TAZ2) and within the first α helix of the fourth intrinsically disordered linker (ID4) of CBP/p300. Domain-specific methylation profiles were discerned for the ZZ domain in CBP/p300 (found in nine out of 10 tested individuals) and TAZ2 domain in CBP (in 14 out of 20), while a domain-specific diagnostic episignature was refined for the ID4 domain in CBP/p300 (in 21 out of 21). Phenotypes including intellectual disability of varying degree and distinct physical features were defined for each of the regions. These findings demonstrate existence of at least three MKHK subtypes, which are domain specific (MKHK-ZZ, MKHK-TAZ2, and MKHK-ID4) rather than gene specific (CREBBP/EP300). DNA methylation episignatures enable stratification of molecular pathophysiologic entities within a gene or across a family of paralogous genes.

6.
Front Genet ; 15: 1346044, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38425714

RESUMEN

The lysine methyltransferase 2B (KMT2B) gene product is important for epigenetic modifications associated with active gene transcription in normal development and in maintaining proper neural function. Pathogenic variants in KMT2B have been associated with childhood-onset Dystonia-28 and Intellectual developmental disorder, autosomal dominant 68 (MRD 68) for cases of neurodevelopmental impairment without dystonia (DYT28; OMIM 617284 and MRD68; OMIM 619934, respectively). Since its first description in 2016, approximately one hundred KMT2B genetic variants have been reported with heterogeneous phenotypes, including atypical patterns of dystonia evolution and non-dystonic neurodevelopmental phenotypes. KMT2B-related disorders share many overlapping phenotypic characteristics with other neurodevelopmental disorders and delayed dystonia, that can appear later in childhood, often delaying clinical diagnosis. Furthermore, conventional genetic testing may not always provide actionable information (e.g., gene panel selection based on early clinical presentation or variants of uncertain significance), which prevents patients and families from obtaining early access to treatments and support. Herein, we describe the early diagnosis of KMT2B-related neurodevelopmental disorder by DNA methylation episignature testing in a 4-year-old patient without features of dystonia at diagnosis, which is reported to develop in more than 80% of KMT2B-related disorder cases. The proband, a 4-year-old female of Jewish-Israeli descent, presented with speech delay, microcephaly, poor weight gain, attention-deficit and hyperactivity disorder, dysmorphism, intellectual disabilities and joint hyperlaxity, but presented no signs of dystonia at initial evaluation. Episignature screening in this pre-symptomatic patient enabled accurate genetic diagnosis and timely and actionable intervention earlier in the natural history of Childhood-onset Dystonia-28.

7.
HGG Adv ; 5(2): 100273, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38297832

RESUMEN

Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 14 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism, reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated an overall milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, and some had alternative symptomatologies with rational biological links to SMC3. Analyses of tumor and model system transcriptomic data and epigenetic data in a subset of cases suggest that SMC3 pLoF variants reduce SMC3 expression but do not strongly support clustering with functional genomic signatures of typical CdLS. Our finding of substantial population-scale LoF intolerance in concert with variable growth and developmental features in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multilayered genomic data paired with careful phenotyping.


Asunto(s)
Síndrome de Cornelia de Lange , Discapacidad Intelectual , Humanos , Proteínas de Ciclo Celular/genética , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteínas Cromosómicas no Histona/genética , Síndrome de Cornelia de Lange/genética , Heterocigoto , Discapacidad Intelectual/genética , Mutación , Fenotipo
8.
Leukemia ; 38(3): 570-578, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38321107

RESUMEN

Myeloproliferative neoplasms (MPNs) are a group of chronic hematologic malignancies that lead to morbidity and early mortality due to thrombotic complications and progression to acute leukemia. Clinical and mutational risk factors have been demonstrated to predict outcomes in patients with MPNs and are used commonly to guide therapeutic decisions, including allogenic stem cell transplant, in myelofibrosis. Adolescents and young adults (AYA, age ≤45 years) comprise less than 10% of all MPN patients and have unique clinical and therapeutic considerations. The prevalence and clinical impact of somatic mutations implicated in myeloid disease has not been extensively examined in this population. We conducted a retrospective review of patients evaluated at eight Canadian centers for MPN patients diagnosed at ≤45 years of age. In total, 609 patients were included in the study, with median overall survival of 36.8 years. Diagnosis of prefibrotic or overt PMF is associated with the lowest OS and highest risk of AP/BP transformation. Thrombotic complications (24%), including splanchnic circulation thrombosis (9%), were frequent in the cohort. Mutations in addition to those in JAK2/MPL/CALR are uncommon in the initial disease phase in our AYA population (12%); but our data indicate they may be predictive of transformation to post-ET/PV myelofibrosis.


Asunto(s)
Trastornos Mieloproliferativos , Policitemia Vera , Mielofibrosis Primaria , Trombocitemia Esencial , Trombosis , Humanos , Adulto Joven , Adolescente , Persona de Mediana Edad , Mielofibrosis Primaria/genética , Mielofibrosis Primaria/terapia , Policitemia Vera/genética , Trombocitemia Esencial/genética , Canadá/epidemiología , Trastornos Mieloproliferativos/complicaciones , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/terapia , Trombosis/genética , Janus Quinasa 2/genética , Mutación , Calreticulina/genética
9.
Clin Genet ; 105(6): 655-660, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38384171

RESUMEN

Precise regulation of gene expression is important for correct neurodevelopment. 9q34.3 deletions affecting the EHMT1 gene result in a syndromic neurodevelopmental disorder named Kleefstra syndrome. In contrast, duplications of the 9q34.3 locus encompassing EHMT1 have been suggested to cause developmental disorders, but only limited information has been available. We have identified 15 individuals from 10 unrelated families, with 9q34.3 duplications <1.5 Mb in size, encompassing EHMT1 entirely. Clinical features included mild developmental delay, mild intellectual disability or learning problems, autism spectrum disorder, and behavior problems. The individuals did not consistently display dysmorphic features, congenital anomalies, or growth abnormalities. DNA methylation analysis revealed a weak DNAm profile for the cases with 9q34.3 duplication encompassing EHMT1, which could segregate the majority of the affected cases from controls. This study shows that individuals with 9q34.3 duplications including EHMT1 gene present with mild non-syndromic neurodevelopmental disorders and DNA methylation changes different from Kleefstra syndrome.


Asunto(s)
Deleción Cromosómica , Duplicación Cromosómica , Cromosomas Humanos Par 9 , Metilación de ADN , Cardiopatías Congénitas , N-Metiltransferasa de Histona-Lisina , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Metilación de ADN/genética , Cromosomas Humanos Par 9/genética , Masculino , Femenino , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Duplicación Cromosómica/genética , Niño , Preescolar , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/patología , Adolescente , Fenotipo
10.
Am J Hum Genet ; 111(3): 509-528, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38412861

RESUMEN

Neurodevelopmental disorders (NDDs) result from impaired development and functioning of the brain. Here, we identify loss-of-function (LoF) variation in ZFHX3 as a cause for syndromic intellectual disability (ID). ZFHX3 is a zinc-finger homeodomain transcription factor involved in various biological processes, including cell differentiation and tumorigenesis. We describe 42 individuals with protein-truncating variants (PTVs) or (partial) deletions of ZFHX3, exhibiting variable intellectual disability and autism spectrum disorder, recurrent facial features, relative short stature, brachydactyly, and, rarely, cleft palate. ZFHX3 LoF associates with a specific methylation profile in whole blood extracted DNA. Nuclear abundance of ZFHX3 increases during human brain development and neuronal differentiation. ZFHX3 was found to interact with the chromatin remodeling BRG1/Brm-associated factor complex and the cleavage and polyadenylation complex, suggesting a function in chromatin remodeling and mRNA processing. Furthermore, ChIP-seq for ZFHX3 revealed that it predominantly binds promoters of genes involved in nervous system development. We conclude that loss-of-function variants in ZFHX3 are a cause of syndromic ID associating with a specific DNA methylation profile.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Haploinsuficiencia/genética , Trastornos del Neurodesarrollo/genética , Encéfalo/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
11.
Adv Hematol ; 2024: 3056216, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375212

RESUMEN

Background: Thrombocytosis is a common reason for referral to Hematology. Differentiating between secondary causes of thrombocytosis and essential thrombocythemia (ET) is often clinically challenging. A practical diagnostic approach to identify secondary thrombocytosis could reduce overinvestigation such as next generation sequencing (NGS) panel. Methods and Results: All adult patients with thrombocytosis (≥450 × 109/L) who underwent molecular testing at a single tertiary care centre between January 1, 2018 and May 31, 2021 were evaluated. Clinical and laboratory variables were compared between patients with secondary thrombocytosis vs. ET. Clinical variables included smoking, thrombosis, splenectomy, active malignancy, chronic inflammatory disease, and iron deficiency anemia. Laboratory variables included complete blood count (CBC), ferritin, and myeloid mutations detected by NGS. The overall yield of molecular testing was 52.4%; 92.1% of which were mutations in JAK2, CALR, and/or MPL. Clinical factors predictive of ET included history of arterial thrombosis (p < 0.05); active malignancy, chronic inflammatory disease, splenectomy, and iron deficiency were associated with secondary thrombocytosis (p < 0.05). A diagnosis of ET was associated with higher hemoglobin, mean corpuscular volume (MCV), red cell distribution width (RDW), and mean platelet volume (MPV), while secondary thrombocytosis was associated with higher body mass index, white blood cells, and neutrophils (p < 0.01). Conclusion: A practical approach to investigating patients with persistent thrombocytosis based on clinical characteristics such as active malignancy, chronic inflammatory disease, splenectomy, and iron deficiency may assist in accurately identifying patients more likely to have secondary causes of thrombocytosis and reduce overinvestigation, particularly costly molecular testing.

12.
Eur J Hum Genet ; 32(6): 619-629, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38351292

RESUMEN

Mowat-Wilson syndrome (MOWS) is a rare congenital disease caused by haploinsufficiency of ZEB2, encoding a transcription factor required for neurodevelopment. MOWS is characterized by intellectual disability, epilepsy, typical facial phenotype and other anomalies, such as short stature, Hirschsprung disease, brain and heart defects. Despite some recognizable features, MOWS rarity and phenotypic variability may complicate its diagnosis, particularly in the neonatal period. In order to define a novel diagnostic biomarker for MOWS, we determined the genome-wide DNA methylation profile of DNA samples from 29 individuals with confirmed clinical and molecular diagnosis. Through multidimensional scaling and hierarchical clustering analysis, we identified and validated a DNA methylation signature involving 296 differentially methylated probes as part of the broader MOWS DNA methylation profile. The prevalence of hypomethylated CpG sites agrees with the main role of ZEB2 as a transcriptional repressor, while differential methylation within the ZEB2 locus supports the previously proposed autoregulation ability. Correlation studies compared the MOWS cohort with 56 previously described DNA methylation profiles of other neurodevelopmental disorders, further validating the specificity of this biomarker. In conclusion, MOWS DNA methylation signature is highly sensitive and reproducible, providing a useful tool to facilitate diagnosis.


Asunto(s)
Metilación de ADN , Facies , Enfermedad de Hirschsprung , Proteínas de Homeodominio , Discapacidad Intelectual , Microcefalia , Proteínas Represoras , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/patología , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Microcefalia/genética , Microcefalia/diagnóstico , Microcefalia/patología , Enfermedad de Hirschsprung/genética , Enfermedad de Hirschsprung/diagnóstico , Enfermedad de Hirschsprung/patología , Proteínas de Homeodominio/genética , Proteínas Represoras/genética , Femenino , Masculino , Niño , Preescolar , Adolescente , Islas de CpG
13.
Genet Med ; 26(5): 101075, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38251460

RESUMEN

PURPOSE: This study aims to assess the diagnostic utility and provide reporting recommendations for clinical DNA methylation episignature testing based on the cohort of patients tested through the EpiSign Clinical Testing Network. METHODS: The EpiSign assay utilized unsupervised clustering techniques and a support vector machine-based classification algorithm to compare each patient's genome-wide DNA methylation profile with the EpiSign Knowledge Database, yielding the result that was reported. An international working group, representing distinct EpiSign Clinical Testing Network health jurisdictions, collaborated to establish recommendations for interpretation and reporting of episignature testing. RESULTS: Among 2399 cases analyzed, 1667 cases underwent a comprehensive screen of validated episignatures, imprinting, and promoter regions, resulting in 18.7% (312/1667) positive reports. The remaining 732 referrals underwent targeted episignature analysis for assessment of sequence or copy-number variants (CNVs) of uncertain significance or for assessment of clinical diagnoses without confirmed molecular findings, and 32.4% (237/732) were positive. Cases with detailed clinical information were highlighted to describe various utility scenarios for episignature testing. CONCLUSION: Clinical DNA methylation testing including episignatures, imprinting, and promoter analysis provided by an integrated network of clinical laboratories enables test standardization and demonstrates significant diagnostic yield and clinical utility beyond DNA sequence analysis in rare diseases.


Asunto(s)
Metilación de ADN , Pruebas Genéticas , Enfermedades Raras , Humanos , Metilación de ADN/genética , Enfermedades Raras/genética , Enfermedades Raras/diagnóstico , Pruebas Genéticas/normas , Pruebas Genéticas/métodos , Femenino , Regiones Promotoras Genéticas/genética , Masculino , Variaciones en el Número de Copia de ADN/genética , Niño , Adulto , Preescolar , Impresión Genómica/genética
14.
Eur J Hum Genet ; 32(4): 435-439, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38273166

RESUMEN

Verheij syndrome [VRJS; OMIM 615583] is a rare autosomal dominant neurodevelopmental disorder characterized by distinct clinical features, including growth retardation, intellectual disability, cardiac, and renal anomalies. VRJS is caused by deletions of chromosome 8q24.3 or pathogenic variants in the PUF60 gene. Recently, pathogenic PUF60 variants have been reported in some individuals with VRJS, contributing to the variability in the clinical presentation and severity of the condition. PUF60 encodes a protein involved in regulating gene expression and cellular growth. In this report, we describe a new case of VRJS with developmental delay, cardiac-, and renal abnormalities, caused by a heterozygous pathogenic PUF60 variant. Surprisingly, DNA methylation analysis revealed a pattern resembling the Cornelia de Lange syndrome (CdLS) episignature, suggesting a potential connection between PUF60 and CdLS-related genes. This case report further delineates the clinical and molecular spectrum of VRJS and supports further research to validate the interaction between VRJS and CdLS.


Asunto(s)
Síndrome de Cornelia de Lange , Discapacidad Intelectual , Humanos , Síndrome de Cornelia de Lange/diagnóstico , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/patología , Discapacidad Intelectual/genética , Fenotipo , Proteínas de Ciclo Celular/genética
16.
Genet Med ; 26(3): 101041, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38054406

RESUMEN

PURPOSE: The main objective of this study was to assess clinical features and genome-wide DNA methylation profiles in individuals affected by intellectual developmental disorder, autosomal dominant 21 (IDD21) syndrome, caused by variants in the CCCTC-binding factor (CTCF) gene. METHODS: DNA samples were extracted from peripheral blood of 16 individuals with clinical features and genetic findings consistent with IDD21. DNA methylation analysis was performed using the Illumina Infinium Methylation EPIC Bead Chip microarrays. The methylation levels were fitted in a multivariate linear regression model to identify the differentially methylated probes. A binary support vector machine classification model was constructed to differentiate IDD21 samples from controls. RESULTS: We identified a highly specific, reproducible, and sensitive episignature associated with CTCF variants. Six variants of uncertain significance were tested, of which 2 mapped to the IDD21 episignature and clustered alongside IDD21 cases in both heatmap and multidimensional scaling plots. Comparison of the genomic DNA methylation profile of IDD21 with that of 56 other neurodevelopmental disorders provided insights into the underlying molecular pathophysiology of this disorder. CONCLUSION: The robust and specific CTCF/IDD21 episignature expands the growing list of neurodevelopmental disorders with distinct DNA methylation profiles, which can be applied as supporting evidence in variant classification.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Discapacidades del Desarrollo/genética , Metilación de ADN/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Síndrome
18.
J Hum Genet ; 69(2): 101-105, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37904029

RESUMEN

Partial duplications of genes can be challenging to detect and interpret and, therefore, likely represent an underreported cause of human disease. X-linked dominant variants in ATRX are associated with Alpha-thalassemia/impaired intellectual development syndrome, X-linked (ATR-X syndrome), a clinically heterogeneous disease generally presenting with intellectual disability, hypotonia, characteristic facies, genital anomalies, and alpha-thalassemia. We describe an affected male with a de novo hemizygous intragenic duplication of ~43.6 kb in ATRX, detected by research genome sequencing following non-diagnostic clinical testing. RNA sequencing and DNA methylation episignature analyses were central in variant interpretation, and this duplication was subsequently interpreted as disease-causing. This represents the smallest reported tandem duplication within ATRX associated with disease. This case demonstrates the diagnostic utility of integrating multiple omics technologies, which can ultimately lead to a definitive diagnosis for rare disease patients.


Asunto(s)
Discapacidad Intelectual , Discapacidad Intelectual Ligada al Cromosoma X , Talasemia alfa , Humanos , Masculino , Talasemia alfa/diagnóstico , Talasemia alfa/genética , Proteína Nuclear Ligada al Cromosoma X/genética , Variaciones en el Número de Copia de ADN/genética , Discapacidad Intelectual Ligada al Cromosoma X/diagnóstico , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética
19.
Genet Med ; 26(3): 101050, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38126281

RESUMEN

PURPOSE: Hao-Fountain syndrome (HAFOUS) is a neurodevelopmental disorder caused by pathogenic variants in USP7. HAFOUS is characterized by developmental delay, intellectual disability, speech delay, behavioral abnormalities, autism spectrum disorder, seizures, hypogonadism, and mild dysmorphic features. We investigated the phenotype of 18 participants with HAFOUS and performed DNA methylation (DNAm) analysis, aiming to generate a diagnostic biomarker. Furthermore, we performed comparative analysis with known episignatures to gain more insight into the molecular pathophysiology of HAFOUS. METHODS: We assessed genomic DNAm profiles of 18 individuals with pathogenic variants and variants of uncertain significance (VUS) in USP7 to map and validate a specific episignature. The comparison between the USP7 cohort and 56 rare genetic disorders with earlier reported DNAm episignatures was performed with statistical and functional correlation. RESULTS: We mapped a sensitive and specific DNAm episignature for pathogenic variants in USP7 and utilized this to reclassify the VUS. Comparative epigenomic analysis showed evidence of HAFOUS similarity to a number of other rare genetic episignature disorders. CONCLUSION: We discovered a sensitive and specific DNAm episignature as a robust diagnostic biomarker for HAFOUS that enables VUS reclassification in USP7. We also expand the phenotypic spectrum of 9 new and 5 previously reported individuals with HAFOUS.


Asunto(s)
Anomalías Múltiples , Trastorno del Espectro Autista , Enfermedades del Desarrollo Óseo , Anomalías Craneofaciales , Sordera , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Metilación de ADN/genética , Trastorno del Espectro Autista/genética , Peptidasa Específica de Ubiquitina 7/genética , Epigenómica , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Trastornos del Neurodesarrollo/genética , Fenotipo , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...