Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Biosci (Landmark Ed) ; 27(9): 274, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36224024

RESUMEN

BACKGROUND: Candida albicans is responsible for a wide range of medical ailments, from harmless cutaneous to life-threatening bloodstream infections. Growing cases of antifungal-drug resistance strains of C. albicans become a rationale to explore and develop novel anti-candida agents. In this paper, we assessed the anti-candida activity of the methanolic extracts of various tropical medicinal plants from Myrtaceae, Poaceae, and Zingiberaceae, commonly used in Indonesia to treat fungal infections. METHODS: Candida albicans strain ATCC 10231 was used as a subject to assess the anti-Candida activities of plant methanolic extracts through disc diffusion assay. Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) were observed. RESULTS: All plant extracts in this study showed antifungal activities against C. albicans. Among them, Cymbopogon citratus, Curcuma xanthorrhiza, Curcuma aeruginosa, and Zingiber officinale var. rubrum showed the lowest MIC and MFC value of 3.8 mg/mL. CONCLUSIONS: The growth inhibition of C. albicans on disc diffusion assay was demonstrated by Z. officinale var. rubrum and C. longa, which were comparable to antifungal nystatin. Further investigation of the chemical constituents of the extracts and the cytotoxicity test is needed to further develop plant-derived anti-candida agents.


Asunto(s)
Candida albicans , Plantas Medicinales , Antifúngicos/farmacología , Candida , Indonesia , Pruebas de Sensibilidad Microbiana , Nistatina , Extractos Vegetales/farmacología
2.
Biology (Basel) ; 11(5)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35625422

RESUMEN

Soil salinity and mineral deficiency are major problems in agriculture. Many studies have reported that plant-associated microbiota, particularly rhizosphere and root microbiota, play a crucial role in tolerance against salinity and mineral deficiency. Nevertheless, there are still many unknown parts of plant-microbe interaction, especially regarding their role in halophyte adaptation to coastal ecosystems. Here, we report the bacterial community associated with the roots of coastal sand dune halophytes Spinifex littoreus and Calotropis gigantea, and the soil properties that affect their composition. Strong correlations were observed between root bacterial diversity and soil mineral composition, especially with soil Calcium (Ca), Titanium (Ti), Cuprum (Cu), and Zinc (Zn) content. Soil Ti and Zn content showed a positive correlation with bacterial diversity, while soil Ca and Cu had a negative effect on bacterial diversity. A strong correlation was also found between the abundance of several bacterial species with soil salinity and mineral content, suggesting that some bacteria are responsive to changes in soil salinity and mineral content. Some of the identified bacteria, such as Bacillus idriensis and Kibdelosporangium aridum, are known to have growth-promoting effects on plants. Together, the findings of this work provided valuable information regarding bacterial communities associated with the roots of sand dune halophytes and their interactions with soil properties. Furthermore, we also identified several bacterial species that might be involved in tolerance against stresses. Further work will be focused on isolation and transplantation of these potential microbes, to validate their role in plant tolerance against stresses, not only in their native hosts but also in crops.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...