Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 4751, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550318

RESUMEN

Cities can host significant biological diversity. Yet, urbanisation leads to the loss of habitats, species, and functional groups. Understanding how multiple taxa respond to urbanisation globally is essential to promote and conserve biodiversity in cities. Using a dataset encompassing six terrestrial faunal taxa (amphibians, bats, bees, birds, carabid beetles and reptiles) across 379 cities on 6 continents, we show that urbanisation produces taxon-specific changes in trait composition, with traits related to reproductive strategy showing the strongest response. Our findings suggest that urbanisation results in four trait syndromes (mobile generalists, site specialists, central place foragers, and mobile specialists), with resources associated with reproduction and diet likely driving patterns in traits associated with mobility and body size. Functional diversity measures showed varied responses, leading to shifts in trait space likely driven by critical resource distribution and abundance, and taxon-specific trait syndromes. Maximising opportunities to support taxa with different urban trait syndromes should be pivotal in conservation and management programmes within and among cities. This will reduce the likelihood of biotic homogenisation and helps ensure that urban environments have the capacity to respond to future challenges. These actions are critical to reframe the role of cities in global biodiversity loss.


Asunto(s)
Quirópteros , Urbanización , Animales , Abejas , Síndrome , Ecosistema , Biodiversidad , Aves
2.
Sci Rep ; 13(1): 12085, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495643

RESUMEN

Fireworks and other pyrotechnics are acknowledged as sources of disturbance to wildlife, with evidence that many species react adversely to their sight and sound at discharge. However, how firework releases impact wildlife within a city landscape is poorly understood. Here, we explore the effect of fireworks on urban birds using an L-band staring radar (90-degree sector out to a 5 km range) to capture bird activity derived from flight tracks (i.e. 3D visualisation of individual flying birds built from radar detections) within the city of Birmingham, UK. Comparing the tracks between baseline periods with no fireworks and periods where fireworks are commonly discharged using a null model indicated that birds flew at higher elevations during firework periods (standardised effect sizes of 17.11, 26.54 and 5.83, for Diwali, Bonfire Night, and New Year's Eve, respectively). Birds also flew in more significant numbers (standardised effect sizes of 23.41, 7.98 and 7.19 for Diwali, Bonfire Night, and New Year's Eve, respectively). Therefore, bird activity was elevated during firework events at a time of night when many would otherwise be roosting. Such disturbance may have implications for avian biology since large public firework events occur at colder times of the year in the UK when birds have elevated thermoregulatory costs.


Asunto(s)
Líquidos Corporales , Radar , Animales , Animales Salvajes , Aves , Ciudades
3.
Science ; 377(6610): 1099-1103, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36048937

RESUMEN

Earth's forests harbor extensive biodiversity and are currently a major carbon sink. Forest conservation and restoration can help mitigate climate change; however, climate change could fundamentally imperil forests in many regions and undermine their ability to provide such mitigation. The extent of climate risks facing forests has not been synthesized globally nor have different approaches to quantifying forest climate risks been systematically compared. We combine outputs from multiple mechanistic and empirical approaches to modeling carbon, biodiversity, and disturbance risks to conduct a synthetic climate risk analysis for Earth's forests in the 21st century. Despite large uncertainty in most regions we find that some forests are consistently at higher risk, including southern boreal forests and those in western North America and parts of the Amazon.


Asunto(s)
Cambio Climático , Bosques , Árboles , Biodiversidad , Carbono , Secuestro de Carbono , Ecosistema , Medición de Riesgo
4.
Sci Rep ; 10(1): 20725, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33244100

RESUMEN

When and where animals breed can shape the genetic structure and diversity of animal populations. The importance of drivers of genetic diversity is amplified in island populations that tend to have more delineated gene pools compared to continental populations. Studies of relatedness as a function of the spatial distribution of individuals have demonstrated the importance of spatial organisation for individual fitness with outcomes that are conditional on the overall genetic diversity of the population. However, few studies have investigated the impact of breeding timing on genetic structure. We characterise the fine-scale genetic structure of a geographically-isolated population of seabirds. Microsatellite markers provide evidence for largely transient within-breeding season temporal processes and limited spatial processes, affecting genetic structure in an otherwise panmictic population of sooty terns Onychoprion fuscatus. Earliest breeders had significantly different genetic structure from the latest breeders. Limited evidence was found for localised spatial structure, with a small number of individuals being more related to their nearest neighbours than the rest of the population. Therefore, population genetic structure is shaped by heterogeneities in collective movement in time and to a lesser extent space, that result in low levels of spatio-temporal genetic structure and the maintenance of genetic diversity.


Asunto(s)
Charadriiformes/genética , Animales , Cruzamiento/métodos , Variación Genética/genética , Genética de Población/métodos , Estaciones del Año
5.
Glob Chang Biol ; 21(7): 2467-2478, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25644403

RESUMEN

As the global population urbanizes, dramatic changes are expected in city lighting and the urban form, which may threaten the functioning of urban ecosystems and the services they deliver. However, little is known about the ecological impact of lighting in different urban contexts. Movement is an important ecological process that can be disrupted by artificial lighting. We explored the impact of lighting on gap crossing for Pipistrellus pipistrellus, a species of bat (Chiroptera) common within UK cities. We aimed to determine whether the probability of crossing gaps in tree cover varied with crossing distance and lighting level, through stratified field surveys. We then used the resulting data on barrier thresholds to model the landscape resistance due to lighting across an entire city and explored the potential impact of scenarios for future changes to street lighting. The level of illumination required to create a barrier effect reduced as crossing distance increased. For those gaps where crossing was recorded, bats selected the darker parts of gaps. Heavily built parts of the case study city were associated with large and brightly lit gaps, and spatial models indicate movement would be highly restricted in these areas. Under a scenario for brighter street lighting, the area of accessible land cover was further reduced in heavily built parts of the city. We believe that this is the first study to demonstrate how lighting may create resistance to species movement throughout an entire city. That connectivity in urban areas is being disrupted for a relatively common species raises questions about the impacts on less tolerant groups and the resilience of bat communities in urban centres. However, this mechanistic approach raises the possibility that some ecological function could be restored in these areas through the strategic dimming of lighting and narrowing of gaps.

6.
PLoS One ; 9(1): e86925, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24475197

RESUMEN

Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s) is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS) to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union) criteria. However, vulnerable species were more strongly negatively affected by urbanization than increasing species. Two hypotheses are proposed to explain this observation: (1) that the underlying factors causing declines in vulnerable species (e.g., possibilities include fragmentation, habitat deterioration, agrochemical pollution) across Britain are the same in urban areas, but that these deleterious effects are more intense in urban areas; and/or (2) that urban areas can act as ecological traps for some vulnerable species of moth, the light drawing them in from the surrounding landscape into sub-optimal urban habitats.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Ecosistema , Mariposas Nocturnas/fisiología , Urbanización/tendencias , Animales , Modelos Estadísticos , Dinámica Poblacional , Especificidad de la Especie , Reino Unido
7.
PLoS One ; 8(5): e61460, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23671566

RESUMEN

Artificial lighting is strongly associated with urbanisation and is increasing in its extent, brightness and spectral range. Changes in urban lighting have both positive and negative effects on city performance, yet little is known about how its character and magnitude vary across the urban landscape. A major barrier to related research, planning and governance has been the lack of lighting data at the city extent, particularly at a fine spatial resolution. Our aims were therefore to capture such data using aerial night photography and to undertake a case study of urban lighting. We present the finest scale multi-spectral lighting dataset available for an entire city and explore how lighting metrics vary with built density and land-use. We found positive relationships between artificial lighting indicators and built density at coarse spatial scales, whilst at a local level lighting varied with land-use. Manufacturing and housing are the primary land-use zones responsible for the city's brightly lit areas, yet manufacturing sites are relatively rare within the city. Our data suggests that efforts to address light pollution should broaden their focus from residential street lighting to include security lighting within manufacturing areas.


Asunto(s)
Ciudades , Iluminación , Urbanización , Inglaterra , Contaminación Ambiental , Mapeo Geográfico , Humanos , Luz , Fotograbar , Población Urbana
8.
PLoS One ; 8(4): e61866, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23613958

RESUMEN

BACKGROUND: Riparian habitats are subjected to frequent inundation (flooding) and are characterised by food webs that exhibit variability in aquatic/terrestrial subsidies across the ecotone. The strength of this subsidy in active riparian floodplains is thought to underpin local biodiversity. Terrestrial invertebrates dominate the fauna, exhibiting traits that allow exploitation of variable aquatic subsidies while reducing inundation pressures, leading to inter-species micro-spatial positioning. The effect these strategies have on prey selection is not known. This study hypothesised that plasticity in prey choice from either aquatic or terrestrial sources is an important trait linked to inundation tolerance and avoidance. METHOD/PRINCIPAL FINDINGS: We used hydrological, isotopic and habitat analyses to investigate the diet of riparian Coleoptera in relation to inundation risk and relative spatial positioning in the floodplain. The study examined patch scale and longitudinal changes in utilisation of the aquatic subsidy according to species traits. Prey sourced from terrestrial or emerging/stranded aquatic invertebrates varied in relation to traits for inundation avoidance or tolerance strategies. Traits that favoured rapid dispersal corresponded with highest proportions of aquatic prey, with behavioural traits further predicting uptake. Less able dispersers showed minimal use of aquatic subsidy and switched to a terrestrial diet under moderate inundation pressures. All trait groups showed a seasonal shift in diet towards terrestrial prey in the early spring. Prey selection became exaggerated towards aquatic prey in downstream samples. CONCLUSIONS/SIGNIFICANCE: Our results suggest that partitioning of resources and habitat creates overlapping niches that increase the processing of external subsidies in riparian habitats. By demonstrating functional complexity, this work advances understanding of floodplain ecosystem processes and highlights the importance of hydrological variability. With an increasing interest in reconnecting rivers to their floodplains, these invertebrates represent a key functional element in ensuring that such reconnections have demonstrable ecological value.


Asunto(s)
Escarabajos/fisiología , Ecosistema , Inundaciones , Conducta Predatoria/fisiología , Ríos , Animales , Dieta , Geografía , Marcaje Isotópico , Modelos Biológicos , Presión , Probabilidad , Estaciones del Año , Estadísticas no Paramétricas , Reino Unido
9.
PLoS One ; 7(3): e33300, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22428015

RESUMEN

BACKGROUND: Urbanization is characterized by high levels of sealed land-cover, and small, geometrically complex, fragmented land-use patches. The extent and density of urbanized land-use is increasing, with implications for habitat quality, connectivity and city ecology. Little is known about densification thresholds for urban ecosystem function, and the response of mammals, nocturnal and cryptic taxa are poorly studied in this respect. Bats (Chiroptera) are sensitive to changing urban form at a species, guild and community level, so are ideal model organisms for analyses of this nature. METHODOLOGY/PRINCIPAL FINDINGS: We surveyed bats around urban ponds in the West Midlands conurbation, United Kingdom (UK). Sites were stratified between five urban land classes, representing a gradient of built land-cover at the 1 km(2) scale. Models for bat presence and activity were developed using land-cover and land-use data from multiple radii around each pond. Structural connectivity of tree networks was used as an indicator of the functional connectivity between habitats. All species were sensitive to measures of urban density. Some were also sensitive to landscape composition and structural connectivity at different spatial scales. These results represent new findings for an urban area. The activity of Pipistrellus pipistrellus (Schreber 1774) exhibited a non-linear relationship with the area of built land-cover, being much reduced beyond the threshold of ∼60% built surface. The presence of tree networks appears to mitigate the negative effects of urbanization for this species. CONCLUSIONS/SIGNIFICANCE: Our results suggest that increasing urban density negatively impacts the study species. This has implications for infill development policy, built density targets and the compact city debate. Bats were also sensitive to the composition and structure of the urban form at a range of spatial scales, with implications for land-use planning and management. Protecting and establishing tree networks may improve the resilience of some bat populations to urban densification.


Asunto(s)
Quirópteros/fisiología , Conservación de los Recursos Naturales/métodos , Demografía , Ecosistema , Árboles , Animales , Ciudades , Modelos Logísticos , Modelos Biológicos , Actividad Motora/fisiología , Densidad de Población , Reino Unido , Urbanización/tendencias
10.
PLoS One ; 6(8): e23459, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21858128

RESUMEN

BACKGROUND: The potential for reduced pollination ecosystem service due to global declines of bees and other pollinators is cause for considerable concern. Habitat degradation, destruction and fragmentation due to agricultural intensification have historically been the main causes of this pollinator decline. However, despite increasing and accelerating levels of global urbanization, very little research has investigated the effects of urbanization on pollinator assemblages. We assessed changes in the diversity, abundance and species composition of bee and hoverfly pollinator assemblages in urban, suburban, and rural sites across a UK city. METHODOLOGY/PRINCIPAL FINDINGS: Bees and hoverflies were trapped and netted at 24 sites of similar habitat character (churchyards and cemeteries) that varied in position along a gradient of urbanization. Local habitat quality (altitude, shelter from wind, diversity and abundance of flowers), and the broader-scale degree of urbanization (e.g. percentage of built landscape and gardens within 100 m, 250 m, 500 m, 1 km, and 2.5 km of the site) were assessed for each study site. The diversity and abundance of pollinators were both significantly negatively associated with higher levels of urbanization. Assemblage composition changed along the urbanization gradient with some species positively associated with urban and suburban land-use, but more species negatively so. Pollinator assemblages were positively affected by good site habitat quality, in particular the availability of flowering plants. CONCLUSIONS/SIGNIFICANCE: Our results show that urban areas can support diverse pollinator assemblages, but that this capacity is strongly affected by local habitat quality. Nonetheless, in both urban and suburban areas of the city the assemblages had fewer individuals and lower diversity than similar rural habitats. The unique development histories of different urban areas, and the difficulty of assessing mobile pollinator assemblages in just part of their range, mean that complementary studies in different cities and urban habitats are required to discover if these findings are more widely applicable.


Asunto(s)
Abejas/fisiología , Biodiversidad , Dípteros/fisiología , Polinización/fisiología , Análisis de Varianza , Animales , Abejas/clasificación , Ciudades , Dípteros/clasificación , Geografía , Densidad de Población , Dinámica Poblacional , Especificidad de la Especie , Reino Unido , Urbanización
11.
Oecologia ; 150(1): 50-60, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16906428

RESUMEN

In common with many habitat elements of riverine landscapes, exposed riverine sediments (ERS) are highly disturbed, naturally patchy and regularly distributed, whose specialists are strongly adapted to flood disturbance and loss of habitat due to succession. Investigations of dispersal in ERS habitats therefore provide an important contrast to the unnaturally fragmented, stable systems usually studied. The present investigation analysed the three interdependent stages of dispersal: (1) emigration, (2) inter-patch movement and (3) immigration of a common ERS specialised beetle, Bembidion atrocaeruleum (Stephens 1828) (Coleoptera, Carabidae), in a relatively unmodified section of river, using mark-resight methods. Dispersal was correlated with estimates of local population size and density, water level and patch quality in order to test for condition-dependent dispersal cues. Flood inundation of habitat was found to increase strongly the overall rate of dispersal, and the rate of emigration was significantly higher from patches that were heavily trampled by cattle. Strongly declining numbers of dispersers with distance suggested low dispersal rates during periods of low water level. Dispersal in response to habitat degradation by cattle trampling would likely lead to a higher overall population fitness than a random dispersal strategy. Dispersal distances were probably adapted to the underlying habitat landscape distribution, high-flow dispersal cues and ready means of long-distance dispersal through hydrochory. Species whose dispersal is adapted to the natural habitat distribution of riverine landscapes are likely to be strongly negatively affected by reduced flood frequency and intensity and habitat fragmentation through flow regulation or channelisation.


Asunto(s)
Escarabajos/fisiología , Demografía , Ecosistema , Ríos , Animales , Densidad de Población , Dinámica Poblacional , Reino Unido
12.
Sci Total Environ ; 360(1-3): 205-22, 2006 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-16274730

RESUMEN

The carabid fauna of 28 derelict sites in the West Midlands (England) were sampled over the course of one growing season (April-October, 1999). The study aimed to investigate the relationship between carabid assemblages and five measures of landscape structure pertinent to derelict habitat. At each site measurements of landscape features pertinent to derelict habitat were made: (i) the proximity of habitat corridors; (ii) the density of surrounding derelict land; (iii) the distance between the site and the rural fringe; and (iv) the size of the site. Concurrent surveys of the soil characteristics, vegetation type, and land use history were conducted. The data were analysed using a combination of ordination (DCA, RDA), variance partitioning (using pRDA) and binary linear regression. The results suggest that: 1. There is very little evidence that the carabid assemblages of derelict sites were affected by landscape structure, with assemblages instead being principally related to within-site habitat variables, such as site age (since last disturbance), substrate type and vegetation community. 2. No evidence was found to support the hypothesis that sites away from railway corridors are impoverished in their carabid fauna than sites on corridors. 3. There are some suggestions from this study that rarer and non-flying specialist species may be affected by isolation, taking longer to reach sites. We infer from this that older sites with retarded succession, and sites in higher densities of surrounding derelict land may eventually become more species rich and that these sites may be important for maintaining populations of rarer and flightless species. 4. Conservation efforts to maintain populations of these species should focus principally on habitat quality issues, such as maintaining early successional habitats that have a diversity of seed producing annuals and perennial plants and enhancing substrate variability rather than landscape issues.


Asunto(s)
Escarabajos , Ambiente , Animales , Biodiversidad , Ciudades , Escarabajos/clasificación , Conservación de los Recursos Naturales , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...