Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 50(1): 267-277, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36331742

RESUMEN

Expression changes for tryptophan hydroxylase 1 (TPH1), the rate-limiting enzyme in serotonin synthesis, by environmental glutamine (GLN) were examined in mouse mastocytoma-derived P815-HTR cells. GLN-treated cells exhibited a robust increase in TPH1 mRNA after a 6 h exposure to GLN. 6-Diazo-5-oxo-L-norleucine (DON), a glutamine-utilizing glutaminase inhibitor, significantly inhibited the GLN-induction of TPH1 mRNA. Nuclear run-on assays and mRNA decay experiments demonstrated that the primary mechanism leading to increased TPH1 mRNA levels was not due to transcriptional changes, but rather due to increased TPH1 RNA stability induced by GLN. Treatment with GLN also led to activation of p38 MAP kinase, but not p42/44 MAPK. In addition, SB203580, a p38 MAP kinase specific inhibitor, completely abolished the GLN-mediated increase of TPH1 mRNA levels, suggesting the pathway stabilizing TPH1 mRNA might be mediated by the activated p38 MAP kinase pathway. Additionally, SB203580 significantly reduced the stability of TPH1 mRNA, and this reduction of the stability was not affected by GLN in the culture medium, implying a sequential signaling from GLN being mediated by p38 MAP kinase, resulting in alteration of TPH1 mRNA stability. TPH1 mRNA stability loss was also dependent on de novo protein synthesis as shown by treatment of cells with a transcriptional/translational blocker. We provide evidence that TPH1 mRNA levels are increased in response to increased exogenous GLN in mouse mastocytoma cells via a stabilization of TPH1 mRNA due to the activity of the p38 MAP kinase.


Asunto(s)
Mastocitoma , Mitógenos , Ratones , Animales , Glutamina , ARN Mensajero/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Inhibidores Enzimáticos/farmacología , Triptófano Hidroxilasa/genética
2.
Cancers (Basel) ; 14(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35681744

RESUMEN

Studies in targeting metabolism in cancer cells have shown the flexibility of cells in reprogramming their pathways away from a given metabolic block. Such behavior prompts a combination drug approach in targeting cancer metabolism, as a single compound may not address the tumor intractability. Overall, mammalian target of rapamycin complex 1 (mTORC1) signaling has been implicated as enabling metabolic escape in the case of a glycolysis block. From a library of compounds, the tyrosine kinase inhibitor ponatinib was screened to provide optimal reduction in metabolic activity in the production of adenosine triphosphate (ATP), pyruvate, and lactate for multiple myeloma cells; however, these cells displayed increasing levels of oxidative phosphorylation (OXPHOS), enabling them to continue generating ATP, although at a slower pace. The combination of ponatinib with the mTORC1 inhibitor, sirolimus, blocked OXPHOS; an effect also manifested in activity reductions for hexokinase 2 (HK2) and glucose-6-phosphate isomerase (GPI) glycolysis enzymes. There were also remarkably higher levels of reactive oxygen species (ROS) produced in mouse xenografts, on par with increased glycolytic block. The combination of ponatinib and sirolimus resulted in synergistic inhibition of tumor xenografts with no overt toxicity in treated mice for kidney and liver function or maintaining weight.

3.
Mol Cells ; 45(8): 588-602, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35754370

RESUMEN

Various RNA-binding proteins (RBPs) are key components in RNA metabolism and contribute to several neurodevelop-mental disorders. To date, only a few of such RBPs have been characterized for their roles in neocortex development. Here, we show that the RBP, Rbms1, is required for radial migration, polarization and differentiation of neuronal progenitors to neurons in the neocortex development. Rbms1 expression is highest in the early development in the developing cortex, with its expression gradually diminishing from embryonic day 13.5 (E13.5) to postnatal day 0 (P0). From in utero electroporation (IUE) experiments when Rbms1 levels are knocked down in neuronal progenitors, their transition from multipolar to bipolar state is delayed and this is accompanied by a delay in radial migration of these cells. Reduced Rbms1 levels in vivo also reduces differentiation as evidenced by a decrease in levels of several differentiation markers, meanwhile having no significant effects on proliferation and cell cycle rates of these cells. As an RNA binding protein, we profiled the RNA binders of Rbms1 by a cross-linked-RIP sequencing assay, followed by quantitative real-time polymerase chain reaction verification and showed that Rbms1 binds and stabilizes the mRNA for Efr3a, a signaling adapter protein. We also demonstrate that ectopic Efr3a can recover the cells from the migration defects due to loss of Rbms1, both in vivo and in vitro migration assays with cultured cells. These imply that one of the functions of Rbms1 involves the stabilization of Efr3a RNA message, required for migration and maturation of neuronal progenitors in radial migration in the developing neocortex.


Asunto(s)
Neocórtex , Animales , Movimiento Celular , Proteínas de Unión al ADN/metabolismo , Humanos , Ratones , Neocórtex/metabolismo , Neurogénesis , Neuronas/metabolismo , ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
4.
Biomed Pharmacother ; 150: 113032, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35486977

RESUMEN

In MYCN-amplified neuroblastoma (NB), we noticed that the single compound treatment with the HDAC inhibitor vorinostat led to a reprogramming of the glycolytic pathway in these cells. This reprogramming was upregulation of fatty acid oxidation (FAO) and oxidative phosphorylation (OXPHOS), allowing the cells to generate ATP, albeit at a reduced rate. This behavior was dependent on reduced levels of MYCN and a corresponding increase in the levels of PPARD transcription factors. By integrating metabolic and functional studies in NB cells and mouse xenografts, we demonstrate a compensatory upregulation of FAO/OXPHOS metabolism that promotes resistance to HDAC inhibitors. From the additional compounds that could reverse this metabolic reprogramming, the mTORC1 inhibitor sirolimus was selected. Besides both a block of glycolysis and OXPHOS, the HDAC/mTORC1 inhibitor combination produced significantly higher levels of reactive oxygen species (ROS) in the treated cells and in xenograft tumor samples, also a consequence of increased glycolytic block. The lead compounds were also tested for changes in the message levels of the glycolytic enzymes and their pathway activity, and HK2 and GPI glycolytic enzymes were most affected at their RNA message level. This combination was seen with no overall toxicity in treated mice in terms of weight loss or liver/kidney function.


Asunto(s)
Inhibidores de Histona Desacetilasas , Neuroblastoma , Animales , Línea Celular Tumoral , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo
6.
J Exp Clin Cancer Res ; 41(1): 18, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012594

RESUMEN

BACKGROUND: Neuronal-origin HuD (ELAVL4) is an RNA binding protein overexpressed in neuroblastoma (NB) and certain other cancers. The RNA targets of this RNA binding protein in neuroblastoma cells and their role in promoting cancer survival have been unexplored. In the study of modulators of mTORC1 activity under the conditions of optimal cell growth and starvation, the role of HuD and its two substrates were studied. METHODS: RNA immunoprecipitation/sequencing (RIP-SEQ) coupled with quantitative real-time PCR were used to identify substrates of HuD in NB cells. Validation of the two RNA targets of HuD was via reverse capture of HuD by synthetic RNA oligoes from cell lysates and binding of RNA to recombinant forms of HuD in the cell and outside of the cell. Further analysis was via RNA transcriptome analysis of HuD silencing in the test cells. RESULTS: In response to stress, HuD was found to dampen mTORC1 activity and allow the cell to upregulate its autophagy levels by suppressing mTORC1 activity. Among mRNA substrates regulated cell-wide by HuD, GRB-10 and ARL6IP1 were found to carry out critical functions for survival of the cells under stress. GRB-10 was involved in blocking mTORC1 activity by disrupting Raptor-mTOR kinase interaction. Reduced mTORC1 activity allowed lifting of autophagy levels in the cells required for increased survival. In addition, ARL6IP1, an apoptotic regulator in the ER membrane, was found to promote cell survival by negative regulation of apoptosis. As a therapeutic target, knockdown of HuD in two xenograft models of NB led to a block in tumor growth, confirming its importance for viability of the tumor cells. Cell-wide RNA messages of these two HuD substrates and HuD and mTORC1 marker of activity significantly correlated in NB patient populations and in mouse xenografts. CONCLUSIONS: HuD is seen as a novel means of promoting stress survival in this cancer type by downregulating mTORC1 activity and negatively regulating apoptosis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína 4 Similar a ELAV/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/genética , Animales , Autofagia , Humanos , Masculino , Ratones , Ratones Desnudos , Transfección
7.
Cell Physiol Biochem ; 53(1): 258-280, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31313541

RESUMEN

BACKGROUND/AIMS: Although neuroblastoma is a heterogeneous cancer, a substantial portion overexpresses CD71 (transferrin receptor 1) and MYCN. This study provides a mechanistically driven rationale for a combination therapy targeting neuroblastomas that doubly overexpress or have amplified CD71 and MYCN. For this subset, CD71 was targeted by its natural ligand, gambogic acid (GA), and MYCN was targeted with an HDAC inhibitor, vorinostat. A combination of GA and vorinostat was then tested for efficacy in cancer and non-cancer cells. METHODS: Microarray analysis of cohorts of neuroblastoma patients indicated a subset of neuroblastomas overexpressing both CD71 and MYCN. The viability with proliferation changes were measured by MTT and colony formation assays in neuroblastoma cells. Transfection with CD71 or MYCN along with quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to detect expression changes. For pathway analysis, gene ontology (GO) and Protein-protein interaction analyses were performed to evaluate the potential mechanisms of GA and vorinostat in treated cells. RESULTS: For both GA and vorinostat, their pathways were explored for specificity and dependence on their targets for efficacy. For GA-treated cells, the viability/proliferation loss due to GA was dependent on the expression of CD71 and involved activation of caspase-3 and degradation of EGFR. It relied on the JNK-IRE1-mTORC1 pathway. The drug vorinostat also reduced cell viability/proliferation in the treated cells and this was dependent on the presence of MYCN as MYCN siRNA transfection led to a blunting of vorinostat efficacy and conversely, MYCN overexpression improved the vorinostat potency in those cells. Vorinostat inhibition of MYCN led to an increase of the pro-apoptotic miR183 levels and this, in turn, reduced the viability/proliferation of these cells. The combination treatment with GA and vorinostat synergistically reduced cell survival in the MYCN and CD71 overexpressing tumor cells. The same treatment had no effect or minimal effect on HEK293 and HEF cells used as models of non-cancer cells. CONCLUSION: A combination therapy with GA and vorinostat may be suitable for MYCN and CD71 overexpressing neuroblastomas.


Asunto(s)
Antígenos CD , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Sistemas de Liberación de Medicamentos , Proteína Proto-Oncogénica N-Myc , Neuroblastoma , Receptores de Transferrina , Antígenos CD/genética , Antígenos CD/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Células HEK293 , Humanos , MicroARNs/biosíntesis , MicroARNs/genética , Proteína Proto-Oncogénica N-Myc/antagonistas & inhibidores , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética , Receptores de Transferrina/antagonistas & inhibidores , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Vorinostat/farmacología , Xantonas/farmacología
8.
Exp Neurobiol ; 28(2): 172-182, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31138988

RESUMEN

Rheb (Ras homolog enriched in the brain) is a small GTPase protein that plays an important role in cell signaling for development of the neocortex through modulation of mTORC1 (mammalian-target-of-rapamycin-complex-1) activity. mTORC1 is known to control various biological processes including axonal growth in forming complexes at the lysosomal membrane compartment. As such, anchoring of Rheb on the lysosomal membrane via the farnesylation of Rheb at its cysteine residue (C180) is required for its promotion of mTOR activity. To test the significance of Rheb farnesylation, we overexpressed a farnesylation mutant form of Rheb, Rheb C180S, in primary rat hippocampal neurons and also in mouse embryonic neurons using in utero electroporation. Interestingly, we found that Rheb C180S maintained promotional effect of axonal elongation similar to the wild-type Rheb in both test systems. On the other hand, Rheb C180S failed to exhibit the multiple axon-promoting effect which is found in wild-type Rheb. The levels of phospho-4EBP1, a downstream target of mTORC1, were surprisingly increased in Rheb C180S transfected neurons, despite the levels of phosphorylated mTOR being significantly decreased compared to control vector transfectants. A specific mTORC1 inhibitor, rapamycin, also could not completely abolish axon elongation characteristics of Rheb C180S in transfected cells. Our data suggests that Rheb in a non-membrane compartment can promote the axonal elongation via phosphorylation of 4EBP1 and through an mTORC1-independent pathway.

9.
Mol Cells ; 42(2): 123-134, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30622227

RESUMEN

Lysophosphatidic acid (LPA) is an endogenous lysophospholipid with signaling properties outside of the cell and it signals through specific G protein-coupled receptors, known as LPA1-6. For one of its receptors, LPA1 (gene name Lpar1), details on the cis-acting elements for transcriptional control have not been defined. Using 5'RACE analysis, we report the identification of an alternative transcription start site of mouse Lpar1 and characterize approximately 3,500 bp of non-coding flanking sequence 5' of mouse Lpar1 gene for promoter activity. Transient transfection of cells derived from mouse neocortical neuroblasts with constructs from the 5' regions of mouse Lpar1 gene revealed the region between -248 to +225 serving as the basal promoter for Lpar1. This region also lacks a TATA box. For the region between -761 to -248, a negative regulatory element affected the basal expression of Lpar1. This region has three E-box sequences and mutagenesis of these E-boxes, followed by transient expression, demonstrated that two of the E-boxes act as negative modulators of Lpar1. One of these E-box sequences bound the HeLa E-box binding protein (HEB), and modulation of HEB levels in the transfected cells regulated the transcription of the reporter gene. Based on our data, we propose that HEB may be required for a proper regulation of Lpar1 expression in the embryonic neocortical neuroblast cells and to affect its function in both normal brain development and disease settings.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Elementos E-Box/genética , Neuronas/metabolismo , Regiones Promotoras Genéticas , Receptores del Ácido Lisofosfatídico/genética , Región de Flanqueo 5'/genética , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica , Células HeLa , Humanos , Ratones , Neocórtex , Unión Proteica/genética , Receptores del Ácido Lisofosfatídico/metabolismo , Eliminación de Secuencia/genética , Sitio de Iniciación de la Transcripción
10.
Anim Cells Syst (Seoul) ; 22(3): 189-196, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30460097

RESUMEN

The primary aim of this study was to determine whether the oral administration of AD-lico™, a functional extract from Glycyrrhiza inflata in combination with 5-aminosalicylic acid (5-ASA) could ameliorate the inflammatory symptoms in dextran sulfate sodium (DSS)-induced colitis in rodents. This DSS rodent model is used to study drug candidates for colitis, as part of the spectrum of diseases falling under the inflammatory bowel disease (IBD) category. Here, with oral AD-lico™ administration, there was a substantial disruption of the colonic architectural changes due to DSS and a significant reduction in colonic myeloperoxidase (MPO) activity, a marker of colitis. In the same samples, there were also reduced levels of colonic and serum IL-6 in the oral AD-lico™ treated rats. This study also addressed the possible mechanisms for AD-lico™ mediated changes on colonic inflammation markers. These included the observations that AD-lico™ dampened the IL-6 proinflammatory-signaling pathway in THP-1 human monocytic cells and reduced the TNFα-mediated upregulation of surface adhesion molecule ICAM-1 in human umbilical vein endothelial cells (HUVECs). Finally, it was shown that AD-lico™ could be combined with 5-ASA in reducing the inflammatory markers for colorectal sites affected by colitis, a first study of its kind for a combination therapy.

11.
Neuroscience ; 355: 126-140, 2017 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-28501506

RESUMEN

Brain developmental disorders such as lissencephaly can result from faulty neuronal migration and differentiation during the formation of the mammalian neocortex. The cerebral cortex is a modular structure, where developmentally, newborn neurons are generated as a neuro-epithelial sheet and subsequently differentiate, migrate and organize into their final positions in the cerebral cortical plate via a process involving both tangential and radial migration. The specific role of Mest, an imprinted gene, in neuronal migration has not been previously studied. In this work, we reduced expression of Mest with in utero electroporation of neuronal progenitors in the developing embryonic mouse neocortex. Reduction of Mest levels by shRNA significantly reduced the number of neurons migrating to the cortical plate. Also, Mest-knockdown disrupted the transition of bipolar neurons into multipolar neurons migrating out of the sub-ventricular zone region. The migrating neurons also adopted a more tangential migration pattern upon knockdown of the Mest message, losing their potential to attach to radial glia cells, required for radial migration. The differentiation and migration properties of neurons via Wnt-Akt signaling were affected by Mest changes. In addition, miR-335, encoded in a Mest gene intron, was identified as being responsible for blocking the default tangential migration of the neurons. Our results suggest that Mest and its intron product, miR-335, play important roles in neuronal migration with Mest regulating the morphological transition of primary neurons required in the formation of the mammalian neocortex.


Asunto(s)
Movimiento Celular/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Neocórtex/metabolismo , Neuronas/clasificación , Neuronas/fisiología , Proteínas/metabolismo , Animales , Animales Recién Nacidos , Cadherinas/metabolismo , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neocórtex/citología , Neocórtex/embriología , Neocórtex/crecimiento & desarrollo , Nestina/metabolismo , Neuroblastoma/patología , Neurogénesis/genética , Proteínas/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factores de Tiempo , Transducción Genética , Transfección , Proteínas tau/metabolismo
12.
Anim Cells Syst (Seoul) ; 21(4): 255-262, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30460076

RESUMEN

The aim of this study was to evaluate in vivo both the anti-Helicobacter and the gastric-relaxing effects of AD-lico/Healthy Gut™ in rat models. AD-lico/Healthy Gut™ is a specially prepared commercial formulation of Glycyrrhiza inflata extract that is under clinical development for indications of gastrointestinal disease and inflammatory bowel disease. In the current study, the oral administration of AD-lico/Healthy Gut™ significantly reduced mucosal damage from Helicobacter pylori in rats and decreased the expression of the inflammatory markers iNOS and COX-2 in the test cells. AD-lico/Healthy Gut™ also reduced mucosal damage caused by water immersion stress in rats. The accelerated gastric emptying in normal rats was also seen with AD-lico/Healthy Gut™, providing relief in gastric relaxation in the test animals. The special formulation of AD-lico/Healthy Gut™ with reduced levels of component glycyrrhizin also has benefits in minimizing the potential side effects attributed to glycyrrhizin seen with similar Glycyrrhiza extracts in terms of induction of hypokalemia and muscle weakness. The preparation has a relatively high phenolic compound content relative to other methods of preparation and is indicative of lower glycyrrhizin levels. These results suggest that AD-lico/Healthy Gut™ may provide the necessary relief from a number of stomach discomfort issues faced by a large population of people.

13.
Biochim Biophys Acta Gen Subj ; 1861(2): 23-36, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27815218

RESUMEN

BACKGROUND: Drug resistance from apoptosis is a challenging issue with different cancer types, and there is an interest in identifying other means of inducing cytotoxicity. Here, treatment of neuroblastoma cells with oxyresveratrol (OXYRES), a natural antioxidant, led to dose-dependent cell death and increased autophagic flux along with activation of caspase-dependent apoptosis. METHODS: For cell viability, we performed the CCK-8 assay. Protein expression changes were with Western blot and immunocytochemistry. Silencing of proteins was with siRNA. The readouts for cell cycle, mitochondria membrane potential, caspase-3, autophagy and apoptosis were performed with flow cytometry. RESULTS: Phosphorylation of p38 MAPK increased with OXYRES treatment and inhibition of p38 reduced autophagy and cell death from OXYRES. In contrast, PI3K/AKT/mTOR signaling decreased in the target cells with OXYRES and inhibition of PI3K or mTOR enhanced OXYRES-mediated cytotoxicity with increased levels of autophagy. Modulation of either of the apoptosis and autophagy flux pathways affected the extent of cell death by OXYRES, but did not affect the indicators of these pathways with respect to each other. Both pathways were independent of ROS generation or p53 activation. CONCLUSION: OXYRES led to cell death from autophagy, which was independent of apoptosis induction. The OXYRES effects were due to changes in the activity levels of p38 MAPK and PI3K/AKT/mTOR. GENERAL SIGNIFICANCE: With two independent and parallel pathways for cytotoxicity induction in target cells, this study puts forward a potential utility for OXYRES or the pathways it represents as novel means of inducing cell death in neuroblastoma cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neuroblastoma/tratamiento farmacológico , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos , Estilbenos/farmacología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Caspasa 3/metabolismo , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células HEK293 , Humanos , Neuroblastoma/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Biochem Pharmacol ; 117: 97-112, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27520483

RESUMEN

18α-Glycyrrhetinic acid (18-GA) is a known gap-junction inhibitor with demonstrated anticancer effects. However, the different modes of cell cytotoxicity for 18-GA remain to be characterized. In this study, 18-GA reduced the expression of cell-cell interaction proteins (N- and VE-cadherin), and led to a dose-dependent increase in cytotoxicity of the neuroblastoma cells tested, but was less toxic toward actively dividing human embryonic kidney cells. We found that 18-GA could induce both autophagy and apoptosis. 18-GA mediated autophagy was due to accumulation of Atg5, Atg7 and LC3II and degradation of p62. Individual siRNAs against Atg5 and Atg7 prevented autophagy and resulted in a further loss of viability with 18-GA. In addition, combination of 18-GA with autophagy inhibitor chloroquine produced a more significant cell death. This implied a pro-survival function for autophagy induction with 18-GA. 18-GA also led to the destabilization of Bcl-2/Beclin-1 interaction and cleavage of Beclin-1, a protein known to play role in apoptosis and autophagy induction. Treatment of cells by a pan-caspase inhibitor or a caspase-3 siRNA prevented a large portion of 18-GA mediated cytotoxicity, demonstrating that caspase-dependent apoptosis induction was responsible for most of the observed cytotoxicity. In terms of signaling, 18-GA led to reduced phosphorylation of all three classes of MAP kinases. Taken together, 18-GA or its pathways may lead to more effective, targeted therapeutics against neuroblastoma.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Beclina-1/metabolismo , Ácido Glicirretínico/análogos & derivados , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neuroblastoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Animales , Antineoplásicos/efectos adversos , Autofagia/efectos de los fármacos , Beclina-1/antagonistas & inhibidores , Beclina-1/genética , Cadherinas/antagonistas & inhibidores , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Forma de la Célula/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ácido Glicirretínico/efectos adversos , Ácido Glicirretínico/farmacología , Células HEK293 , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neuroblastoma/metabolismo , Neuroblastoma/patología , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/genética , Interferencia de ARN , Ratas
15.
Sci Transl Med ; 5(178): 178ra39, 2013 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-23536011

RESUMEN

The fibroblast growth factor (FGF) pathway promotes tumor growth and angiogenesis in many solid tumors. Although there has long been interest in FGF pathway inhibitors, development has been complicated: An effective FGF inhibitor must block the activity of multiple mitogenic FGF ligands but must spare the metabolic hormone FGFs (FGF-19, FGF-21, and FGF-23) to avoid unacceptable toxicity. To achieve these design requirements, we engineered a soluble FGF receptor 1 Fc fusion protein, FP-1039. FP-1039 binds tightly to all of the mitogenic FGF ligands, inhibits FGF-stimulated cell proliferation in vitro, blocks FGF- and vascular endothelial growth factor (VEGF)-induced angiogenesis in vivo, and inhibits in vivo growth of a broad range of tumor types. FP-1039 antitumor response is positively correlated with RNA levels of FGF2, FGF18, FGFR1c, FGFR3c, and ETV4; models with genetic aberrations in the FGF pathway, including FGFR1-amplified lung cancer and FGFR2-mutated endometrial cancer, are particularly sensitive to FP-1039-mediated tumor inhibition. FP-1039 does not appreciably bind the hormonal FGFs, because these ligands require a cell surface co-receptor, klotho or ß-klotho, for high-affinity binding and signaling. Serum calcium and phosphate levels, which are regulated by FGF-23, are not altered by administration of FP-1039. By selectively blocking nonhormonal FGFs, FP-1039 treatment confers antitumor efficacy without the toxicities associated with other FGF pathway inhibitors.


Asunto(s)
Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Inmunoglobulina G/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Proteínas de Fusión Oncogénica/uso terapéutico , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/uso terapéutico , Calcio/sangre , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Fosfatos/sangre , Proteínas Recombinantes de Fusión
16.
Proc Natl Acad Sci U S A ; 101(31): 11422-7, 2004 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-15280538

RESUMEN

Stimulation of the CD28 costimulatory receptor can lead to an increased surface lipid raft expression in T lymphocytes. Here, we demonstrate that CD28 itself is recruited to lipid rafts in both Jurkat and peripheral blood T lymphocytes. This recruitment of CD28 is triggered by engagement with either anti-CD28 mAbs or a natural ligand of CD28, B7.2 (CD86). All detectable tyrosine-phosphorylated CD28 is in the lipid raft fractions, as is all of the CD28 associated with phosphatidylinositol 3-kinase, which is recruited to CD28 by tyrosine phosphorylation. Targeting the CD28 cytoplasmic domain to lipid rafts results in its tyrosine phosphorylation, indicating that tyrosine phosphorylation of CD28 may occur after translocation to lipid rafts. Studies with Jurkat cells deficient in Lck and CD45 demonstrate that movement of CD28 into lipid rafts does not require Lck and CD45 and can occur despite reduction of CD28 tyrosine phosphorylation to below the levels of detection. Analysis of murine CD28 mutants reveals a correlation between translocation to lipid rafts and costimulation of IL-2 production. Taken together with the known importance of lipid rafts in T cell activation, these observations suggest that translocation to lipid rafts may play an important role in CD28 signaling.


Asunto(s)
Antígenos CD28/metabolismo , Interleucina-2/biosíntesis , Microdominios de Membrana/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Anticuerpos Monoclonales/farmacología , Antígenos CD/metabolismo , Antígeno B7-2 , Antígenos CD28/química , Antígenos CD28/genética , Quimera , Reactivos de Enlaces Cruzados , Citoplasma , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fibroblastos/citología , Humanos , Células Jurkat , Antígenos Comunes de Leucocito/genética , Antígenos Comunes de Leucocito/metabolismo , Ligandos , Glicoproteínas de Membrana/metabolismo , Fosforilación , Estructura Terciaria de Proteína , Ratas , Tirosina/metabolismo
17.
Nat Immunol ; 5(4): 435-42, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15004555

RESUMEN

CD28 costimulation is essential for CD4(+) T cell proliferation, survival, interleukin 2 (IL-2) production and T helper type 2 development. To define the nature of the signals that may drive different T cell responses, we have done a structure-function analysis of the CD28 cytoplasmic tail in primary T cells. CD28-mediated T cell proliferation and IL-2 production did not require a particular cytoplasmic domain. In contrast, IL-4 production was driven by the cooperative activity of specific motifs within the CD28 cytoplasmic tail. Using a gene-complementation approach, we provide evidence that one component of this T helper type 2 differentiation signal was mediated by 3-phosphoinositide-dependent protein kinase 1. Thus, different mechanisms underlie the induction of distinct T cell functional responses by CD28.


Asunto(s)
Diferenciación Celular/fisiología , Células Th2/fisiología , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Animales , Antígenos CD28/genética , Antígenos CD28/fisiología , Técnicas de Transferencia de Gen , Interleucina-2/biosíntesis , Interleucina-4/metabolismo , Ratones , Ratones Endogámicos BALB C , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA