Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496490

RESUMEN

Molecular mechanisms driving clonal aggressiveness in leukemia are not fully understood. We tracked and analyzed two mouse MLL-rearranged leukemic clones independently evolving towards higher aggressiveness. More aggressive subclones lost their growth differential ex vivo but restored it upon secondary transplantation, suggesting molecular memory of aggressiveness. Development of aggressiveness was associated with clone-specific gradual modulation of chromatin states and expression levels across the genome, with a surprising preferential trend of reversing the earlier changes between normal and leukemic progenitors. To focus on the core aggressiveness program, we identified genes with consistent changes of expression and chromatin marks that were maintained in vivo and ex vivo in both clones. Overexpressing selected core genes (Smad1 as aggressiveness driver, Irx5 and Plag1 as suppressors) affected leukemic progenitor growth in the predicted way and had convergent downstream effects on central transcription factors and repressive epigenetic modifiers, suggesting a broader regulatory network of leukemic aggressiveness.

2.
Cell ; 186(21): 4528-4545.e18, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37788669

RESUMEN

MLL/KMT2A amplifications and translocations are prevalent in infant, adult, and therapy-induced leukemia. However, the molecular contributor(s) to these alterations are unclear. Here, we demonstrate that histone H3 lysine 9 mono- and di-methylation (H3K9me1/2) balance at the MLL/KMT2A locus regulates these amplifications and rearrangements. This balance is controlled by the crosstalk between lysine demethylase KDM3B and methyltransferase G9a/EHMT2. KDM3B depletion increases H3K9me1/2 levels and reduces CTCF occupancy at the MLL/KMT2A locus, in turn promoting amplification and rearrangements. Depleting CTCF is also sufficient to generate these focal alterations. Furthermore, the chemotherapy doxorubicin (Dox), which associates with therapy-induced leukemia and promotes MLL/KMT2A amplifications and rearrangements, suppresses KDM3B and CTCF protein levels. KDM3B and CTCF overexpression rescues Dox-induced MLL/KMT2A alterations. G9a inhibition in human cells or mice also suppresses MLL/KMT2A events accompanying Dox treatment. Therefore, MLL/KMT2A amplifications and rearrangements are controlled by epigenetic regulators that are tractable drug targets, which has clinical implications.


Asunto(s)
Epigénesis Genética , Proteína de la Leucemia Mieloide-Linfoide , Adulto , Animales , Humanos , Lactante , Ratones , Doxorrubicina/farmacología , Reordenamiento Génico , Antígenos de Histocompatibilidad , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Leucemia/metabolismo , Lisina/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Translocación Genética
3.
iScience ; 26(10): 107995, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37829203

RESUMEN

Postnatal acquisition of the microbiome is critical to infant health. In preterm infants, empiric use of antibiotics is common, with significant health consequences. To understand the influence of antibiotics on acquisition of the microbiome over time, we longitudinally profiled microbial 16S rRNA in the stool of 79 preterm infants during their hospitalization in the intensive care unit and compared antibiotic treated and untreated infants. Despite similar clinical presentation, antibiotic treated infants had strong deviations in the content, diversity, and most dramatically, temporal stability of their microbiome. Dysbiosis and fluctuations of microbiome content persisted long after antibiotic exposure, up to hospital discharge. Microbiome diversity was dominated by a few common bacteria consistent among all infants. Our findings may inform clinical practice related to antibiotic use and targeted microbial interventions aimed at overcoming the adverse influence of antibiotics on the microbiome of preterm infants at specific developmental time points.

4.
Cell Rep ; 42(9): 113141, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37713312

RESUMEN

Emerging evidence suggests that peripheral immune cells contribute to Alzheimer's disease (AD) neuropathogenesis. Among these, mast cells are known for their functions in allergic reactions and neuroinflammation; however, little is known about their role in AD. Here, we crossed 5XFAD mice with mast cell-deficient strains and observed the effects on AD-related neuropathology and cognitive impairment. We found that mast cell depletion improved contextual fear conditioning in 5XFAD mice without affecting cued fear conditioning, anxiety-like behavior, or amyloid burden. Furthermore, mast cell depletion led to an upregulation of transcriptomic signatures for putatively protective disease-associated microglia and resulted in reduced markers indicative of reactive astrocytes. We hypothesize a system of bidirectional communication between dural mast cells and the brain, where mast cells respond to signals from the brain environment by expressing immune-regulatory mediators, impacting cognition and glial cell function. These findings highlight mast cells as potential therapeutic targets for AD.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Ratones , Animales , Microglía/patología , Mastocitos/patología , Ratones Transgénicos , Enfermedad de Alzheimer/patología , Cognición , Factores Inmunológicos
5.
Nat Commun ; 14(1): 5727, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37714830

RESUMEN

The poor efficacy of chimeric antigen receptor T-cell therapy (CAR T) for solid tumors is due to insufficient CAR T cell tumor infiltration, in vivo expansion, persistence, and effector function, as well as exhaustion, intrinsic target antigen heterogeneity or antigen loss of target cancer cells, and immunosuppressive tumor microenvironment (TME). Here we describe a broadly applicable nongenetic approach that simultaneously addresses the multiple challenges of CAR T as a therapy for solid tumors. The approach reprograms CAR T cells by exposing them to stressed target cancer cells which have been exposed to the cell stress inducer disulfiram (DSF) and copper (Cu)(DSF/Cu) plus ionizing irradiation (IR). The reprogrammed CAR T cells acquire early memory-like characteristics, potent cytotoxicity, enhanced in vivo expansion, persistence, and decreased exhaustion. Tumors stressed by DSF/Cu and IR also reprogram and reverse the immunosuppressive TME in humanized mice. The reprogrammed CAR T cells, derived from peripheral blood mononuclear cells of healthy donors or metastatic female breast cancer patients, induce robust, sustained memory and curative anti-solid tumor responses in multiple xenograft mouse models, establishing proof of concept for empowering CAR T by stressing tumor as a promising therapy for solid tumors.


Asunto(s)
Neoplasias de la Mama , Receptores Quiméricos de Antígenos , Humanos , Femenino , Animales , Ratones , Leucocitos Mononucleares , Microambiente Tumoral , Neoplasias de la Mama/terapia , Modelos Animales de Enfermedad , Inmunosupresores , Linfocitos T
6.
Cells ; 12(17)2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37681863

RESUMEN

The optic nerve head is thought to be the site of initial injury to retinal ganglion cell injury in glaucoma. In the initial segment of the optic nerve directly behind the globe, the ganglion cell axons are unmyelinated and come into direct contact to astrocytes, suggesting that astrocytes may play a role in the pathology of glaucoma. As in other parts of the CNS, optic nerve head astrocytes respond to injury by characteristic changes in cell morphology and gene expression profile. Using RNA-sequencing of glaucomatous optic nerve heads, single-cell PCR, and an in-vivo assay, we demonstrate that an up-regulation of astrocytic phagocytosis is an early event after the onset of increased intraocular pressure. We also show that astrocytes in the glial lamina of the optic nerve are apparently functionally heterogeneous. At any time, even in naïve nerves, some of the cells show signs of reactivity-process hypertrophy, high phagocytic activity, and expression of genetic markers of reactivity whereas neighboring cells apparently are inactive. A period of increased intraocular pressure moves more astrocytes towards the reactive phenotype; however, some cells remain unreactive even in glaucomatous nerves.


Asunto(s)
Astrocitos , Glaucoma , Humanos , Nervio Óptico , Neuroglía , Neuronas
7.
Blood Adv ; 7(21): 6608-6623, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37450380

RESUMEN

Myelodysplastic syndromes (MDSs) are a heterogenous group of diseases affecting the hematopoietic stem cell that are curable only by stem cell transplantation. Both hematopoietic cell intrinsic changes and extrinsic signals from the bone marrow (BM) niche seem to ultimately lead to MDS. Animal models of MDS indicate that alterations in specific mesenchymal progenitor subsets in the BM microenvironment can induce or select for abnormal hematopoietic cells. Here, we identify a subset of human BM mesenchymal cells marked by the expression of CD271, CD146, and CD106. This subset of human mesenchymal cells is comparable with mouse mesenchymal cells that, when perturbed, result in an MDS-like syndrome. Its transcriptional analysis identified Osteopontin (SPP1) as the most overexpressed gene. Selective depletion of Spp1 in the microenvironment of the mouse MDS model, Vav-driven Nup98-HoxD13, resulted in an accelerated progression as demonstrated by increased chimerism, higher mutant myeloid cell burden, and a more pronounced anemia when compared with that in wild-type microenvironment controls. These data indicate that molecular perturbations can occur in specific BM mesenchymal subsets of patients with MDS. However, the niche adaptations to dysplastic clones include Spp1 overexpression that can constrain disease fitness and potentially progression. Therefore, niche changes with malignant disease can also serve to protect the host.


Asunto(s)
Médula Ósea , Síndromes Mielodisplásicos , Humanos , Ratones , Animales , Médula Ósea/patología , Síndromes Mielodisplásicos/genética , Células Madre Hematopoyéticas/metabolismo , Células de la Médula Ósea/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad
8.
Nat Cell Biol ; 25(8): 1121-1134, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37460697

RESUMEN

The epigenetic mechanisms that maintain differentiated cell states remain incompletely understood. Here we employed histone mutants to uncover a crucial role for H3K36 methylation in the maintenance of cell identities across diverse developmental contexts. Focusing on the experimental induction of pluripotency, we show that H3K36M-mediated depletion of H3K36 methylation endows fibroblasts with a plastic state poised to acquire pluripotency in nearly all cells. At a cellular level, H3K36M facilitates epithelial plasticity by rendering fibroblasts insensitive to TGFß signals. At a molecular level, H3K36M enables the decommissioning of mesenchymal enhancers and the parallel activation of epithelial/stem cell enhancers. This enhancer rewiring is Tet dependent and redirects Sox2 from promiscuous somatic to pluripotency targets. Our findings reveal a previously unappreciated dual role for H3K36 methylation in the maintenance of cell identity by integrating a crucial developmental pathway into sustained expression of cell-type-specific programmes, and by opposing the expression of alternative lineage programmes through enhancer methylation.


Asunto(s)
Epigénesis Genética , Histonas , Metilación , Histonas/genética , Histonas/metabolismo , Diferenciación Celular/genética , Fibroblastos/metabolismo , Linaje de la Célula/genética
9.
Am J Transplant ; 23(9): 1319-1330, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37295719

RESUMEN

Mouse kidney allografts are spontaneously accepted in select, fully mismatched donor-recipient strain combinations, like DBA/2J to C57BL/6 (B6), by natural tolerance. We previously showed accepted renal grafts form aggregates containing various immune cells within 2 weeks posttransplant, referred to as regulatory T cell-rich organized lymphoid structures, which are a novel regulatory tertiary lymphoid organ. To characterize the cells within T cell-rich organized lymphoid structures, we performed single-cell RNA sequencing on CD45+ sorted cells from accepted and rejected renal grafts from 1-week to 6-months posttransplant. Analysis of single-cell RNA sequencing data revealed a shifting from a T cell-dominant to a B cell-rich population by 6 months with an increased regulatory B cell signature. Furthermore, B cells were a greater proportion of the early infiltrating cells in accepted vs rejecting grafts. Flow cytometry of B cells at 20 weeks posttransplant revealed T cell, immunoglobulin domain and mucin domain-1+ B cells, potentially implicating a regulatory role in the maintenance of allograft tolerance. Lastly, B cell trajectory analysis revealed intragraft differentiation from precursor B cells to memory B cells in accepted allografts. In summary, we show a shifting T cell- to B cell-rich environment and a differential cellular pattern among accepted vs rejecting kidney allografts, possibly implicating B cells in the maintenance of kidney allograft acceptance.


Asunto(s)
Linfocitos B Reguladores , Ratones , Animales , Transcriptoma , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Riñón , Aloinjertos , Diferenciación Celular , Rechazo de Injerto/etiología , Supervivencia de Injerto
10.
Blood ; 142(7): 658-674, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37267513

RESUMEN

Myeloid cell heterogeneity is known, but whether it is cell-intrinsic or environmentally-directed remains unclear. Here, an inducible/reversible system pausing myeloid differentiation allowed the definition of clone-specific functions that clustered monocytes into subsets with distinctive molecular features. These subsets were orthogonal to the classical/nonclassical categorization and had inherent, restricted characteristics that did not shift under homeostasis, after irradiation, or with infectious stress. Rather, their functional fate was constrained by chromatin accessibility established at or before the granulocyte-monocyte or monocyte-dendritic progenitor level. Subsets of primary monocytes had differential ability to control distinct infectious agents in vivo. Therefore, monocytes are a heterogeneous population of functionally restricted subtypes defined by the epigenome of their progenitors that are differentially selected by physiologic challenges with limited plasticity to transition from one subset to another.


Asunto(s)
Granulocitos , Monocitos , Células Progenitoras Mieloides , Epigenoma , Epigénesis Genética , Diferenciación Celular/genética
11.
Cancer Discov ; 13(8): 1904-1921, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37262067

RESUMEN

Oncocytic (Hürthle cell) carcinoma of the thyroid (HCC) is genetically characterized by complex I mitochondrial DNA mutations and widespread chromosomal losses. Here, we utilize RNA sequencing and metabolomics to identify candidate molecular effectors activated by these genetic drivers. We find glutathione biosynthesis, amino acid metabolism, mitochondrial unfolded protein response, and lipid peroxide scavenging to be increased in HCC. A CRISPR-Cas9 knockout screen in a new HCC model reveals which pathways are key for fitness, and highlights loss of GPX4, a defense against lipid peroxides and ferroptosis, as a strong liability. Rescuing complex I redox activity with the yeast NADH dehydrogenase (NDI1) in HCC cells diminishes ferroptosis sensitivity, while inhibiting complex I in normal thyroid cells augments ferroptosis induction. Our work demonstrates unmitigated lipid peroxide stress to be an HCC vulnerability that is mechanistically coupled to the genetic loss of mitochondrial complex I activity. SIGNIFICANCE: HCC harbors abundant mitochondria, mitochondrial DNA mutations, and chromosomal losses. Using a CRISPR-Cas9 screen inspired by transcriptomic and metabolomic profiling, we identify molecular effectors essential for cell fitness. We uncover lipid peroxide stress as a vulnerability coupled to mitochondrial complex I loss in HCC. See related article by Frank et al., p. 1884. This article is highlighted in the In This Issue feature, p. 1749.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Glándula Tiroides/metabolismo , Carcinoma Hepatocelular/metabolismo , Peróxidos Lipídicos/metabolismo , Fermentación , Células Oxífilas/metabolismo , Neoplasias Hepáticas/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo
12.
Mol Psychiatry ; 28(6): 2549-2562, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37198262

RESUMEN

Environmental toxicant exposure, including air pollution, is increasing worldwide. However, toxicant exposures are not equitably distributed. Rather, low-income and minority communities bear the greatest burden, along with higher levels of psychosocial stress. Both air pollution and maternal stress during pregnancy have been linked to neurodevelopmental disorders such as autism, but biological mechanisms and targets for therapeutic intervention remain poorly understood. We demonstrate that combined prenatal exposure to air pollution (diesel exhaust particles, DEP) and maternal stress (MS) in mice induces social behavior deficits only in male offspring, in line with the male bias in autism. These behavioral deficits are accompanied by changes in microglial morphology and gene expression as well as decreased dopamine receptor expression and dopaminergic fiber input in the nucleus accumbens (NAc). Importantly, the gut-brain axis has been implicated in ASD, and both microglia and the dopamine system are sensitive to the composition of the gut microbiome. In line with this, we find that the composition of the gut microbiome and the structure of the intestinal epithelium are significantly shifted in DEP/MS-exposed males. Excitingly, both the DEP/MS-induced social deficits and microglial alterations in males are prevented by shifting the gut microbiome at birth via a cross-fostering procedure. However, while social deficits in DEP/MS males can be reversed by chemogenetic activation of dopamine neurons in the ventral tegmental area, modulation of the gut microbiome does not impact dopamine endpoints. These findings demonstrate male-specific changes in the gut-brain axis following DEP/MS and suggest that the gut microbiome is an important modulator of both social behavior and microglia.


Asunto(s)
Dopamina , Microglía , Embarazo , Femenino , Ratones , Masculino , Animales , Microglía/metabolismo , Dopamina/metabolismo , Conducta Social , Emisiones de Vehículos , Neuronas Dopaminérgicas
13.
J Alzheimers Dis ; 93(4): 1563-1575, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37212116

RESUMEN

BACKGROUND: Associations between epigenetic aging with cognitive aging and neuropsychiatric measures are not well-understood. OBJECTIVE: 1) To assess cross-sectional correlations between second-generation DNA methylation (DNAm)-based clocks of healthspan and lifespan (i.e., GrimAge, PhenoAge, and DNAm-based estimator of telomere length [DNAmTL]) and cognitive and neuropsychiatric measures; 2) To examine longitudinal associations between change in DNAm markers and change in cognition over 2 years. METHODS: Participants were members of VITAL-DEP (VITamin D and OmegA-3 TriaL- Depression Endpoint Prevention) study. From previously ascertained cognitive groups (i.e., cognitively normal and mild cognitive impairment), we randomly selected 45 participants, aged≥60 years, who completed in-person neuropsychiatric assessments at baseline and 2 years. The primary outcome was global cognitive score (averaging z-scores of 9 tests). Neuropsychiatric Inventory severity scores were mapped from neuropsychiatric symptoms (NPS) from psychological scales and structured diagnostic interviews. DNAm was assayed using Illumina MethylationEPIC 850K BeadChip at baseline and 2 years. We calculated baseline partial Spearman correlations between DNAm markers and cognitive and NPS measures. We constructed multivariable linear regression models to examine longitudinal relations between DNAm markers and cognition. RESULTS: At baseline, we observed a suggestive negative correlation between GrimAge clock markers and global cognition but no signal between DNAm markers and NPS measures. Over 2 years: each 1-year increase in DNAmGrimAge was significantly associated with faster declines in global cognition; each 100-base pair increase in DNAmTL was significantly associated with better global cognition. CONCLUSION: We found preliminary evidence of cross-sectional and longitudinal associations between DNAm markers and global cognition.


Asunto(s)
Envejecimiento , Metilación de ADN , Anciano , Humanos , Envejecimiento/genética , Cognición , Estudios Transversales , Metilación de ADN/genética , Epigénesis Genética/genética , Marcadores Genéticos , Proyectos Piloto
14.
J Clin Med ; 12(7)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37048724

RESUMEN

Vestibular schwannoma (VS) is an intracranial tumor that commonly presents with tinnitus and hearing loss. To uncover the molecular mechanisms underlying VS-associated tinnitus, we applied next-generation sequencing (Illumina HiSeq) to formalin-fixed paraffin-embedded archival VS samples from nine patients with tinnitus (VS-Tin) and seven patients without tinnitus (VS-NoTin). Bioinformatic analysis was used to detect differentially expressed genes (DEG; i.e., ≥two-fold change [FC]) while correcting for multiple comparisons. Using RNA-seq analysis, VS-Tin had significantly lower expression of GFAP (logFC = -3.04), APLNR (logFC = -2.95), PREX2 (logFC = -1.44), and PLVAP (logFC = -1.04; all p < 0.01) vs. VS-NoTin. These trends were validated by using real-time RT-qPCR. At the protein level, immunohistochemistry revealed a trend for less PREX2 and apelin expression and greater expression of NLRP3 inflammasome and CD68-positive macrophages in VS-Tin than in VS-NoTin, suggesting the activation of inflammatory processes in VS-Tin. Functional enrichment analysis revealed that the top three protein categories-glycoproteins, signal peptides, and secreted proteins-were significantly enriched in VS-Tin in comparison with VS-NoTin. In a gene set enrichment analysis, the top pathway was allograft rejection, an inflammatory pathway that includes the MMP9, CXCL9, IL16, PF4, ITK, and ACVR2A genes. Future studies are needed to examine the importance of these candidates and of inflammation in VS-associated tinnitus.

15.
Gastroenterology ; 164(7): 1137-1151.e15, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36871599

RESUMEN

BACKGROUND & AIMS: Fibrosis and tissue stiffening are hallmarks of inflammatory bowel disease (IBD). We have hypothesized that the increased stiffness directly contributes to the dysregulation of the epithelial cell homeostasis in IBD. Here, we aim to determine the impact of tissue stiffening on the fate and function of the intestinal stem cells (ISCs). METHODS: We developed a long-term culture system consisting of 2.5-dimensional intestinal organoids grown on a hydrogel matrix with tunable stiffness. Single-cell RNA sequencing provided stiffness-regulated transcriptional signatures of the ISCs and their differentiated progeny. YAP-knockout and YAP-overexpression mice were used to manipulate YAP expression. In addition, we analyzed colon samples from murine colitis models and human IBD samples to assess the impact of stiffness on ISCs in vivo. RESULTS: We demonstrated that increasing the stiffness potently reduced the population of LGR5+ ISCs and KI-67+-proliferating cells. Conversely, cells expressing the stem cell marker, olfactomedin-4, became dominant in the crypt-like compartments and pervaded the villus-like regions. Concomitantly, stiffening prompted the ISCs to preferentially differentiate toward goblet cells. Mechanistically, stiffening increased the expression of cytosolic YAP, driving the extension of olfactomedin-4+ cells into the villus-like regions, while it induced the nuclear translocation of YAP, leading to preferential differentiation of ISCs toward goblet cells. Furthermore, analysis of colon samples from murine colitis models and patients with IBD demonstrated cellular and molecular remodeling reminiscent of those observed in vitro. CONCLUSIONS: Collectively, our findings highlight that matrix stiffness potently regulates the stemness of ISCs and their differentiation trajectory, supporting the hypothesis that fibrosis-induced gut stiffening plays a direct role in epithelial remodeling in IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Ratones , Animales , Células Caliciformes , Células Madre/fisiología , Mucosa Intestinal/metabolismo , Diferenciación Celular/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Colitis/metabolismo
16.
Res Sq ; 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36865255

RESUMEN

The poor efficacy of chimeric antigen receptor T-cell therapy (CAR T) for solid tumor is due to insufficient CAR T cell tumor infiltration, in vivo expansion, persistence, and effector function, as well as exhaustion, intrinsic target antigen heterogeneity or antigen loss of target cancer cells, and immunosuppressive tumor microenvironment (TME). Here we describe a broadly applicable nongenetic approach that simultaneously addresses the multiple challenges of CAR T as a therapy for solid tumors. The approach massively reprograms CAR T cells by exposing them to stressed target cancer cells which have been exposed to the cell stress inducer disulfiram (DSF) and copper (Cu)(DSF/Cu) plus ionizing irradiation (IR). The reprogrammed CAR T cells acquired early memory-like characteristics, potent cytotoxicity, enhanced in vivo expansion, persistence, and decreased exhaustion. Tumors stressed by DSF/Cu and IR also reprogrammed and reversed immunosuppressive TME in humanized mice. The reprogrammed CAR T cells, derived from peripheral blood mononuclear cells (PBMC) of healthy or metastatic breast cancer patients, induced robust, sustained memory and curative anti-solid tumor responses in multiple xenograft mouse models, establishing proof of concept for empowering CAR T by stressing tumor as a novel therapy for solid tumor.

17.
J Clin Invest ; 133(9)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36862513

RESUMEN

The renal actions of parathyroid hormone (PTH) promote 1,25-vitamin D generation; however, the signaling mechanisms that control PTH-dependent vitamin D activation remain unknown. Here, we demonstrated that salt-inducible kinases (SIKs) orchestrated renal 1,25-vitamin D production downstream of PTH signaling. PTH inhibited SIK cellular activity by cAMP-dependent PKA phosphorylation. Whole-tissue and single-cell transcriptomics demonstrated that both PTH and pharmacologic SIK inhibitors regulated a vitamin D gene module in the proximal tubule. SIK inhibitors increased 1,25-vitamin D production and renal Cyp27b1 mRNA expression in mice and in human embryonic stem cell-derived kidney organoids. Global- and kidney-specific Sik2/Sik3 mutant mice showed Cyp27b1 upregulation, elevated serum 1,25-vitamin D, and PTH-independent hypercalcemia. The SIK substrate CRTC2 showed PTH and SIK inhibitor-inducible binding to key Cyp27b1 regulatory enhancers in the kidney, which were also required for SIK inhibitors to increase Cyp27b1 in vivo. Finally, in a podocyte injury model of chronic kidney disease-mineral bone disorder (CKD-MBD), SIK inhibitor treatment stimulated renal Cyp27b1 expression and 1,25-vitamin D production. Together, these results demonstrated a PTH/SIK/CRTC signaling axis in the kidney that controls Cyp27b1 expression and 1,25-vitamin D synthesis. These findings indicate that SIK inhibitors might be helpful for stimulation of 1,25-vitamin D production in CKD-MBD.


Asunto(s)
Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica , Insuficiencia Renal Crónica , Ratones , Humanos , Animales , Vitamina D/metabolismo , Hormona Paratiroidea/genética , Hormona Paratiroidea/metabolismo , Calcio/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/metabolismo , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/metabolismo , Riñón/metabolismo , Insuficiencia Renal Crónica/metabolismo , Homeostasis , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
18.
Horm Behav ; 150: 105314, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36731301

RESUMEN

Cesarean delivery is associated with diminished plasma levels of several 'birth-signaling' hormones, such as oxytocin and vasopressin. These same hormones have been previously shown to exert organizational effects when acting in early life. For example, our previous work found a broadly gregarious phenotype in prairie voles exposed to oxytocin at birth. Meanwhile, cesarean delivery has been previously associated with changes in social behavior and metabolic processes related to oxytocin and vasopressin. In the present study, we investigated the long-term neurodevelopmental consequences of cesarean delivery in prairie voles. After cross-fostering, vole pups delivered either via cesarean or vaginal delivery were studied throughout development. Cesarean-delivered pups responded to isolation differently in terms of their vocalizations (albeit in opposite directions in the two experiments), huddled in less cohesive groups under warmed conditions, and shed less heat. As young adults, we observed no differences in anxiety-like or alloparental behavior. However, in adulthood, cesarean-delivered voles of both sexes failed to form partner preferences with opposite sex conspecifics. In a follow-up study, we replicated this deficit in partner-preference formation among cesarean-delivered voles and were able to normalize pair-bonding behavior by treating cesarean-delivered vole pups with oxytocin (0.25 mg/kg) at delivery. Finally, we detected minor differences in regional oxytocin receptor expression within the brains of cesarean-delivered voles, as well as microbial composition of the gut. Gene expression changes in the gut epithelium indicated that cesarean-delivered male voles have altered gut development. These results speak to the possibility of unintended developmental consequences of cesarean delivery, which currently accounts for 32.9 % of deliveries in the U.S. and suggest that further research should be directed at whether hormone replacement at delivery influences behavioral outcomes in later life.


Asunto(s)
Pradera , Oxitocina , Animales , Femenino , Masculino , Oxitocina/metabolismo , Estudios de Seguimiento , Apareamiento , Vasopresinas/metabolismo , Conducta Social , Receptores de Oxitocina/genética , Receptores de Oxitocina/metabolismo , Arvicolinae/fisiología
19.
Immunity ; 56(4): 783-796.e7, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36827982

RESUMEN

Diet profoundly influences physiology. Whereas over-nutrition elevates risk for disease via its influence on immunity and metabolism, caloric restriction and fasting appear to be salutogenic. Despite multiple correlations observed between diet and health, the underlying biology remains unclear. Here, we identified a fasting-induced switch in leukocyte migration that prolongs monocyte lifespan and alters susceptibility to disease in mice. We show that fasting during the active phase induced the rapid return of monocytes from the blood to the bone marrow. Monocyte re-entry was orchestrated by hypothalamic-pituitary-adrenal (HPA) axis-dependent release of corticosterone, which augmented the CXCR4 chemokine receptor. Although the marrow is a safe haven for monocytes during nutrient scarcity, re-feeding prompted mobilization culminating in monocytosis of chronologically older and transcriptionally distinct monocytes. These shifts altered response to infection. Our study shows that diet-in particular, a diet's temporal dynamic balance-modulates monocyte lifespan with consequences for adaptation to external stressors.


Asunto(s)
Médula Ósea , Monocitos , Ratones , Animales , Células de la Médula Ósea , Ayuno , Quimiocinas/metabolismo
20.
Allergy ; 78(6): 1595-1604, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36635218

RESUMEN

BACKGROUND: The microbiome associations of food protein-induced enterocolitis syndrome (FPIES) are understudied. We sought to prospectively define the clinical features of FPIES in a birth cohort, and investigate for the evidence of gut dysbiosis. METHODS: We identified children diagnosed with FPIES in the Gastrointestinal Microbiome and Allergic Proctocolitis Study, a healthy infant cohort. Children were assessed and stools were collected at each well child visit. The clinical features of the children with FPIES were summarized. Stool microbiome was analyzed using 16S rRNA sequencing comparing children with and without FPIES. RESULTS: Of the 874 children followed up for 3 years, 8 FPIES cases (4 male) were identified, yielding a cumulative incidence of 0.92%. The most common triggers were oat and rice (n = 3, each) followed by milk (n = 2). The children with FPIES were more likely to have family history of food allergy (50% vs. 15.9% among unaffected, p = .03). The average age of disease presentation was 6 months old. During the first 6 months of life, stool from children with FPIES contained significantly less Bifidobacterium adolescentis, but more pathobionts, including Bacteroides spp. (especially Bacteroides fragilis), Holdemania spp., Lachnobacterium spp., and Acinetobacter lwoffii. The short-chain fatty acid (SCFA)-producing Bifidobacterium shunt was expressed significantly less in the stool from FPIES children. CONCLUSIONS: In this cohort, the cumulative incidence over the 3-year study period was 0.92%. During the first 6 months of life, children with FPIES had evidence of dysbiosis and SCFA production pathway was expressed less in their stool, which may play an important role in the pathogenesis of FPIES.


Asunto(s)
Enterocolitis , Hipersensibilidad a los Alimentos , Niño , Humanos , Lactante , Masculino , Estudios Prospectivos , Disbiosis , ARN Ribosómico 16S/genética , Proteínas en la Dieta/efectos adversos , Síndrome , Hipersensibilidad a los Alimentos/diagnóstico , Enterocolitis/epidemiología , Enterocolitis/etiología , Enterocolitis/diagnóstico , Alérgenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...