Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Heliyon ; 10(10): e30900, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38803943

RESUMEN

Elite controllers (ECs) defined as a small subclass of subjects with HIV capable of controlling human immunodeficiency virus (HIV) replication in the lack of antiretroviral treatment. One class of RNA molecules that serve as vital components in the network of HIV-related transcriptional regulation, are long noncoding RNAs (lncRNAs). The critical part that they take is in transcriptional regulation of HIV through monitoring various cellular signaling pathways. Reportedly, AKT and MAPK signaling pathways serve a crucial role in modulation of HIV infection. In the current investigation, we utilized bioinformatics tools to predict the lncRNAs that have the ability to interact with MAPK3, AKT, and FOXO1. Then, PBMC expression levels of lncRNAs and their target genes (AKT, FOXO1 and MAPK3) measured in the ECs (n = 15), HIV-positive (n = 40) patients and healthy control subjects (n = 40). We found a significant increase and decrease in the level of AKT and FOXO1 expression within the ECs group, respectively than in the HIV + group (P-value <0.0001 and 0.04, respectively). In the ECs group, the level of TINCR and RP11-156E8.1 was overexpressed compared to the HIV + group (P-value: 0.004 and 0.001, respectively). While RP11-573D15.8 level in ECs exhibited a significant suppression in contrast to HIV + group (P-value: 0.02). According to the receiver-operating characteristic (ROC) curve results, AKT and TINCR could serve as useful biomarkers for screening ECs groups from HIV + patients and healthy control groups. Overall, different expression patterns of selected factors and ROC curve results showed these factors could critically contribute to HIV controlling and be considered as diagnostic markers for ECs from HIV + samples.

2.
Virol J ; 21(1): 67, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509569

RESUMEN

Since 1997, highly pathogenic avian influenza viruses, such as H5N1, have been recognized as a possible pandemic hazard to men and the poultry business. The rapid rate of mutation of H5N1 viruses makes the whole process of designing vaccines extremely challenging. Here, we used an in silico approach to design a multi-epitope vaccine against H5N1 influenza A virus using hemagglutinin (HA) and neuraminidase (NA) antigens. B-cell epitopes, Cytotoxic T lymphocyte (CTL) and Helper T lymphocyte (HTL) were predicted via IEDB, NetMHC-4 and NetMHCII-2.3 respectively. Two adjuvants consisting of Human ß-defensin-3 (HßD-3) along with pan HLA DR-binding epitope (PADRE) have been chosen to induce more immune response. Linkers including KK, AAY, HEYGAEALERAG, GPGPGPG and double EAAAK were utilized to link epitopes and adjuvants. This construct encodes a protein having 350 amino acids and 38.46 kDa molecular weight. Antigenicity of ~ 1, the allergenicity of non-allergen, toxicity of negative and solubility of appropriate were confirmed through Vaxigen, AllerTOP, ToxDL and DeepSoluE, respectively. The 3D structure of H5N1 was refined and validated with a Z-Score of - 0.87 and an overall Ramachandran of 99.7%. Docking analysis showed H5N1 could interact with TLR7 (docking score of - 374.08 and by 4 hydrogen bonds) and TLR8 (docking score of - 414.39 and by 3 hydrogen bonds). Molecular dynamics simulations results showed RMSD and RMSF of 0.25 nm and 0.2 for H5N1-TLR7 as well as RMSD and RMSF of 0.45 nm and 0.4 for H5N1-TLR8 complexes, respectively. Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) confirmed stability and continuity of interaction between H5N1-TLR7 with the total binding energy of - 29.97 kJ/mol and H5N1-TLR8 with the total binding energy of - 23.9 kJ/mol. Investigating immune response simulation predicted evidence of the ability to stimulate T and B cells of the immunity system that shows the merits of this H5N1 vaccine proposed candidate for clinical trials.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Vacunas , Animales , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Epítopos de Linfocito T/genética , Receptor Toll-Like 7 , Receptor Toll-Like 8 , Epítopos de Linfocito B , Biología Computacional/métodos , Simulación del Acoplamiento Molecular , Vacunas de Subunidad/genética
3.
Heliyon ; 10(6): e27844, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38524607

RESUMEN

Thrombocytopenia, characterized by a decrease in platelet count, is a multifaceted clinical manifestation that can arise from various underlying causes. This review delves into the intriguing nexus between viruses and thrombocytopenia, shedding light on intricate pathophysiological mechanisms and highlighting the pivotal role of platelets in viral infections. The review further navigates the landscape of thrombocytopenia in relation to specific viruses, and sheds light on the diverse mechanisms through which hepatitis C virus (HCV), measles virus, parvovirus B19, and other viral agents contribute to platelet depletion. As we gain deeper insights into these interactions, we move closer to elucidating potential therapeutic avenues and preventive strategies for managing thrombocytopenia in the context of viral infections.

4.
Health Sci Rep ; 7(2): e1861, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38332929

RESUMEN

Background and aims: MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are well-known types of noncoding RNAs (ncRNAs), which have been known as the key regulators of gene expression. They can play critical roles in viral infection by regulating the host immune response and interacting with genes in the viral genome. In this regard, ncRNAs can be employed as biomarkers for viral diseases. The current study aimed to evaluate peripheral blood mononuclear cell (PBMC) ncRNAs (lncRNAs-homeobox C antisense intergenic RNA [HOTAIR], -H19, X-inactive-specific transcript [XIST], plasmacytoma variant translocation 1 [PVT-1], and miR-34a) as diagnostic biomarkers to differentiate severe COVID-19 cases from mild ones. Methods: Candidate ncRNAs were selected according to previous studies and assessed by real-time polymerase chain reaction in the PBMC samples of patients with severe coronavirus disease 2019 (COVID-19) (n = 40), healthy subjects (n = 40), and mild COVID-19 cases (n = 40). Furthermore, the diagnostic value of the selected ncRNAs was assessed by analyzing the receiver-operating characteristic (ROC). Results: The results demonstrated that the expression pattern of the selected ncRNAs was significantly different between the studied groups. The levels of HOTAIR, XIST, and miR-34a were remarkably overexpressed in the severe COVID-19 group in comparison with the mild COVID-19 group, and in return, the PVT-1 levels were lower than in the mild COVID-19 group. Interestingly, the XIST expression level in men with severe COVID-19 was higher compared to women with mild COVID-19. ROC results suggested that HOTAIR and PVT-1 could serve as useful biomarkers for screening mild COVID-19 from severe COVID-19. Conclusions: Overall, different expression patterns of the selected ncRNAs and ROC curve results revealed that these factors can contribute to COVID-19 pathogenicity and can be considered diagnostic markers of COVID-19 severe outcomes.

5.
Heliyon ; 9(12): e22598, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38144298

RESUMEN

The phenomenon of cell death is a vital aspect in the regulation of aberrant cells such as cancer cells. Anoikis is a kind of cell death that occurs when cells get separated from the extracellular matrix. Some cancer cells can inhibit anoikis in order to progress metastasis. One of the key variables that might be implicated in anoikis resistance (AR) is viral infections. The most important viruses involved in this process are Epstein-Barr virus, human papillomavirus, hepatitis B virus, human herpes virus 8, human T-cell lymphotropic virus type 1, and hepatitis C virus. A better understanding of how carcinogenic viruses suppress anoikis might be helpful in developing an effective treatment for virus-associated cancers. In the current study, we review the role of the mentioned viruses and their gene products in anoikis inhibition.

6.
Biomedicines ; 11(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38002075

RESUMEN

Mesoporous silica nanoparticles (MSNPs) have been reported as an effective system to co-deliver a variety of different agents to enhance efficiency and improve biocompatibility. This study was aimed at the preparation, physicochemical characterization, antimicrobial effects, biocompatibility, and cytotoxicity of vancomycin and meropenem co-loaded in the mesoporous silica nanoparticles (Van/Mrp-MSNPs). The prepared nanoparticles were explored for their physicochemical features, antibacterial and antibiofilm effects, biocompatibility, and cytotoxicity. The minimum inhibitory concentrations (MICs) of the Van/Mrp-MSNPs (0.12-1 µg/mL) against Staphylococcus aureus isolates were observed to be lower than those of the same concentrations of vancomycin and meropenem. The minimum biofilm inhibitory concentration (MBIC) range of the Van/Mrp-MSNPs was 8-64 µg/mL, which was lower than the meropenem and vancomycin MBICs. The bacterial adherence was not significantly decreased upon exposure to levels lower than the MICs of the MSNPs and Van/Mrp-MSNPs. The viability of NIH/3T3 cells treated with serial concentrations of the MSNPs and Van/Mrp-MSNPs were 73-88% and 74-90%, respectively. The Van/Mrp-MSNPs displayed considerable inhibitory effects against MRSA, favorable biocompatibility, and low cytotoxicity. The Van/Mrp-MSNPs could be a potential system for the treatment of infections.

7.
Intervirology ; 66(1): 122-135, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37699384

RESUMEN

INTRODUCTION: This research aimed to evaluate the specific microRNA (miRNA) including miR-17-5p, miRN-140-3p miR-191-5p, miR-200c-3p, and miR-N367 and cellular factors (p21, SDF-1, XCL1, CCL-2, and IL-2) in controlling replication of human immunodeficiency virus (HIV) in ECs. METHODS: The expression of miRNAs was assessed between healthy control groups and patient groups including ART-naïve HIV, HIV ART, ECs, and coinfection (HIV-HBV and HIV-HCV) via real-time PCR technique. Besides, the expression level of the nef gene and cellular factors were assessed by the ELISA method. The differences in the level of cellular factors and selected miRNAs between study groups were analyzed using the Kruskal-Wallis H or one-way ANOVA test. In addition, the potential of selected miRNAs as biomarkers for discriminating study groups was assessed by the receiver-operator characteristic (ROC) curve analysis. RESULTS: Some miRNAs in ECs, HIV ART, and healthy controls have similar expression patterns, whereas a miRNA expression profile of patient groups significantly differed compared to EC and control groups. According to ROC curve analyses, the miR-17-5p, miR-140-3p miR-191-5p, miR-200c-3p, and miR-N367 can be served as biomarkers for discriminating ECs from ART-naïve HIV-infected groups. There was a significant correlation between some miRNAs and cellular factors/the viral load as well. CONCLUSION: This report demonstrated a differentiation in the expression of selected immunological factors and cellular/viral miRNAs in ECs compared to other patient groups. Some miRNAs and cellular factors are involved in the viral replication control, immune response/modulation and can be used as biomarkers for diagnosis of ECs and differentiation with other groups. Differential expression of these miRNAs and cellular factors in different stages of HIV infection can help in finding novel ways for infection control.


Asunto(s)
Coinfección , Infecciones por VIH , Hepatitis C , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Virus de la Hepatitis B/genética , Hepacivirus/genética , Infecciones por VIH/complicaciones , VIH , Perfilación de la Expresión Génica/métodos , Biomarcadores , Hepatitis C/complicaciones
8.
Pathol Res Pract ; 249: 154721, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37591069

RESUMEN

Pseudoexfoliation syndrome (PEX) is a critical clinical and biological extracellular matrix systemic disorder. Despite the unknown nature of PEX etiopathogenesis, it is proven to be associated with various genes and factors. The present research focused on analyzing the expression of miR and inflammatory cytokines in PEX. Serum and aqueous humor (AH) were collected prior to cataract surgery or trabeculectomy from 99 participants (64 with PEX glaucoma, and 35 controls). Real-time PCR was used for assessing the expression pattern of some miRNAs namely let-7b, miR-29a, miR-126, miR-34a, and miR-181a-5p. ELISA was carried out to explore the transcription of some inflammatory cytokines such as TGF-ß, TNF-α, and IL-6. The indication of our results was a significant enhancement in the expression of let-7, miR-34a, and miR-181a-5p in PEX in contrast to the control group. Notwithstanding a significant suppression in miR-29a, and miR-126 expression levels in PEX in contrast to the control group. Analysis of ROC curve revealed that miR-29a and miR-34a are able to act as useful markers in order to discriminate the PEX group from the PEX negative subjects which were determined as the control group. According to the results obtained, the mean levels of TGF-ß, TNF-α, and IL-6 upregulated among PEX subjects in contrast to control samples. In conclusion, our findings indicated that the selected cytokines alongside the selected miRNAs could be introduced as a biomarker panel in the diagnosis of PEX.


Asunto(s)
Síndrome de Exfoliación , MicroARNs , Humanos , MicroARNs/genética , Factor de Necrosis Tumoral alfa , Síndrome de Exfoliación/genética , Interleucina-6 , Factor de Crecimiento Transformador beta/genética , Citocinas
9.
Biomed Pharmacother ; 162: 114367, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37018987

RESUMEN

Despite the need for novel, effective therapeutics for the COVID-19 pandemic, no curative regimen is yet available, therefore patients are forced to rely on supportive and nonspecific therapies. Some SARS-CoV-2 proteins, like the 3 C-like protease (3CLpro) or the major protease (Mpro), have been identified as promising targets for antiviral drugs. The Mpro has major a role in protein processing as well as pathogenesis of the virus, and could be a useful therapeutic target. The antiviral drug nirmatrelvir can keep SARS-CoV-2 from replicating through inhibiting Mpro. Nirmatrelvir was combined with another HIV protease inhibitor, ritonavir, to create Paxlovid (Nirmatrelvir/Ritonavir). The metabolizing enzyme cytochrome P450 3 A is inhibited by ritonavir to lengthen the half-life of nirmatrelvir, so rintonavir acts as a pharmacological enhancer. Nirmatrelvir exhibits potent antiviral activity against current coronavirus variants, despite significant alterations in the SARS-CoV-2 viral genome. Nevertheless, there are still several unanswered questions. This review summarizes the current literature on nirmatrelvir and ritonavir efficacy in treating SARS-CoV-2 infection, and also their safety and possible side effects.


Asunto(s)
COVID-19 , Inhibidores de la Proteasa del VIH , Humanos , Ritonavir , SARS-CoV-2 , Pandemias , Tratamiento Farmacológico de COVID-19 , Antivirales , Péptido Hidrolasas
10.
Intervirology ; 66(1): 63-76, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36882006

RESUMEN

INTRODUCTION: MicroRNAs, or miRNAs, with regulatory performance in inflammatory responses and infection are the prevalent manifestations of severe coronavirus disease (COVID-19). This study aimed to evaluate whether PBMC miRNAs are diagnostic biomarkers to screen the ICU COVID-19 and diabetic COVID-19 subjects. METHODS: Candidate miRNAs were selected through previous studies, and then the PBMC levels of selected miRNAs (miR-28, miR-31, miR-34a, and miR-181a) were measured via quantitative reverse transcription PCR. The diagnostic value of miRNAs was determined by the receiver operating characteristic (ROC) curve. The bioinformatics analysis was utilized to predict the DEM genes and relevant bio-functions. RESULTS: The COVID-19 patients admitted to ICU had significantly greater levels of selected miRNAs compared to non-hospitalized COVID-19 and healthy people. Besides, the mean miR-28 and miR-34a expression levels in the diabetic COVID-19 group were significantly upregulated when compared with the non-diabetic COVID-19 group. ROC analyses demonstrated the role of miR-28, miR-34a, and miR-181a as new biomarkers to discriminate the non-hospitalized COVID-19 group from the COVID-19 patients admitted to ICU samples, and also miR-34a can probably act as a useful biomarker for screening diabetic COVID-19 patients. Using bioinformatics analyses, we found the performance of target transcripts in many bioprocesses and diverse metabolic routes such as the regulation of multiple inflammatory parameters. DISCUSSION: The difference in miRNA expression patterns between the studied groups suggested that miR-28, miR-34a, and miR-181a could be helpful as potent biomarkers for diagnosing and controlling COVID-19.


Asunto(s)
COVID-19 , Diabetes Mellitus , MicroARNs , Humanos , Leucocitos Mononucleares , COVID-19/diagnóstico , MicroARNs/genética , Biomarcadores , Unidades de Cuidados Intensivos
11.
Adv Exp Med Biol ; 1401: 97-162, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35781219

RESUMEN

Autophagy is known as a conserved self-eating mechanism that contributes to cells to degrade different intracellular components (i.e., macromolecular complexes, aggregated proteins, soluble proteins, organelles, and foreign bodies). Autophagy needs formation of a double-membrane structure, which is composed of the sequestered cytoplasmic contents, called autophagosome. There are a variety of internal and external factors involved in initiation and progression of autophagy process. Viruses as external factors are one of the particles that could be associated with different stages of this process. Viruses exert their functions via activation and/or inhibition of a wide range of cellular and molecular targets, which are involved in autophagy process. Besides viruses, a variety of cellular and molecular pathways that are activated and inhibited by several factors (e.g., genetics, epigenetics, and environment factors) are related to beginning and developing of autophagy mechanism. Exosomes and microRNAs have been emerged as novel and effective players anticipated in various stages of autophagy. More knowledge in these pathways and identification of accurate roles of them could help to provide better therapeutic approaches in several diseases such as cancer. We highlighted the roles of viruses, exosomes, and microRNAs in the autophagy processes.


Asunto(s)
Exosomas , MicroARNs , Virus , Exosomas/metabolismo , MicroARNs/metabolismo , Autofagia/fisiología , Autofagosomas/metabolismo
12.
Mol Ther Nucleic Acids ; 28: 758-791, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35664698

RESUMEN

Exosomes are small extracellular vesicles with sizes ranging from 30-150 nanometers that contain proteins, lipids, mRNAs, microRNAs, and double-stranded DNA derived from the cells of origin. Exosomes can be taken up by target cells, acting as a means of cell-to-cell communication. The discovery of these vesicles in body fluids and their participation in cell communication has led to major breakthroughs in diagnosis, prognosis, and treatment of several conditions (e.g., cancer). However, conventional isolation and evaluation of exosomes and their microRNA content suffers from high cost, lengthy processes, difficult standardization, low purity, and poor yield. The emergence of microfluidics devices with increased efficiency in sieving, trapping, and immunological separation of small volumes could provide improved detection and monitoring of exosomes involved in cancer. Microfluidics techniques hold promise for advances in development of diagnostic and prognostic devices. This review covers ongoing research on microfluidics devices for detection of microRNAs and exosomes as biomarkers and their translation to point-of-care and clinical applications.

13.
Braz J Infect Dis ; 26(3): 102354, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35500644

RESUMEN

INTRODUCTION: One of the hallmarks of COVID-19 is overwhelming inflammation, which plays a very important role in the pathogenesis of COVID-19. Thus, identification of inflammatory factors that interact with the SARS-CoV-2 can be very important to control and diagnose the severity of COVID-19. The aim of this study was to investigate the expression patterns of inflammation-related non-coding RNAs (ncRNAs) including MALAT-1, NEAT-1, THRIL, and miR-155-5p from the acute phase to the recovery phase of COVID-19. METHODS: Total RNA was extracted from Peripheral Blood Mononuclear Cell (PBMC) samples of 20 patients with acute COVID-19 infection and 20 healthy individuals and the expression levels of MALAT-1, NEAT-1, THRIL, and miR-155-5p were evaluated by real-time PCR assay. Besides, in order to monitor the expression pattern of selected ncRNAs from the acute phase to the recovery phase of COVID-19 disease, the levels of ncRNAs were re-measured 6‒7 weeks after the acute phase. RESULT: The mean expression levels of MALAT-1, THRIL, and miR-155-5p were significantly increased in the acute phase of COVID-19 compared with a healthy control group. In addition, the expression levels of MALAT-1 and THRIL in the post-acute phase of COVID-19 were significantly lower than in the acute phase of COVID-19. According to the ROC curve analysis, these ncRNAs could be considered useful biomarkers for COVID-19 diagnosis and for discriminating between acute and post-acute phase of COVID-19. DISCUSSION: Inflammation-related ncRNAs (MALAT-1, THRIL, and miR-150-5p) can act as hopeful biomarkers for the monitoring and diagnosis of COVID-19 disease.


Asunto(s)
COVID-19 , MicroARNs , ARN Largo no Codificante , Biomarcadores , COVID-19/complicaciones , COVID-19/diagnóstico , Prueba de COVID-19 , Humanos , Inflamación/genética , Leucocitos Mononucleares , MicroARNs/genética , ARN Largo no Codificante/genética , SARS-CoV-2 , Síndrome Post Agudo de COVID-19
14.
Biomed Pharmacother ; 148: 112743, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35228065

RESUMEN

Viral infections are a common cause of morbidity worldwide. The emergence of Coronavirus Disease 2019 (COVID-19) has led to more attention to viral infections and finding novel therapeutics. The CRISPR-Cas9 system has been recently proposed as a potential therapeutic tool for the treatment of viral diseases. Here, we review the research progress in the use of CRISPR-Cas technology for treating viral infections, as well as the strategies for improving the delivery of this gene-editing tool in vivo. Key challenges that hinder the widespread clinical application of CRISPR-Cas9 technology are also discussed, and several possible directions for future research are proposed.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Terapia Genética/métodos , Virosis/terapia , COVID-19/terapia , Genoma Viral , Infecciones por VIH/terapia , Hepatitis B/terapia , Infecciones por Herpesviridae/terapia , Humanos , Infecciones por Papillomavirus/terapia , SARS-CoV-2
15.
Cell Mol Biol Lett ; 27(1): 14, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35164678

RESUMEN

MicroRNAs (miRNAs) are fundamental post-transcriptional modulators of several critical cellular processes, a number of which are involved in host defense mechanisms. In particular, miRNA let-7 functions as an essential regulator of the function and differentiation of both innate and adaptive immune cells. Let-7 is involved in several human diseases, including cancer and viral infections. Several viral infections have found ways to dysregulate the expression of miRNAs. Extracellular vesicles (EV) are membrane-bound lipid structures released from many types of human cells that can transport proteins, lipids, mRNAs, and miRNAs, including let-7. After their release, EVs are taken up by the recipient cells and their contents released into the cytoplasm. Let-7-loaded EVs have been suggested to affect cellular pathways and biological targets in the recipient cells, and can modulate viral replication, the host antiviral response, and the action of cancer-related viruses. In the present review, we summarize the available knowledge concerning the expression of let-7 family members, functions, target genes, and mechanistic involvement in viral pathogenesis and host defense. This may provide insight into the development of new therapeutic strategies to manage viral infections.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Virosis , Vesículas Extracelulares/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Virosis/genética , Virosis/metabolismo , Replicación Viral
16.
ARYA Atheroscler ; 18(3): 1-10, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-36815956

RESUMEN

BACKGROUND: Coronary artery disease (CAD) is a leading cause of death around the world. Micro-ribonucleic acid (miRNA) can be involved in forming of atherosclerotic plaques, inflammation, cholesterol metabolism, and other mechanisms involved in CAD development. This study aimed to evaluate the expression level of miR-22, miR-30c, miR-145, and miR-519d and their possible association with inflammatory markers among patients with CAD. METHODS: The expression level of miR-22, miR-30c, miR-145, miR-519d, interleukin 6 (IL-6), and transforming growth factor beta (TGF-ß) was determined in peripheral blood mononuclear cells (PBMCs) from 46 patients with CAD and 39 healthy controls using real-time quantitative polymerase chain reaction (qPCR) assay. RESULTS: 53.8% (n = 21) and 52.2% (n = 24) of controls and cases were men, respectively; the mean age was 59.8 ± 7.4 and 57.0 ± 9.8 years, respectively. The miRNA expression pattern of each group showed significantly different expression profiles. In the CAD patients group, miR-22, miR-30c, and miR-145 were down-regulated compared to the control group. On the opposite, miR-519d was up-regulated in patients with CAD compared to the control group. Our results also showed that the expression levels of IL-6 and TGF-ß were up-regulated among patients with CAD compared to the control group. In addition, the expression of miR-145 and miR-519d had a significantly negative and positive correlation with TGF-ß and IL-6, respectively. CONCLUSION: The change in expression levels of miR-22, miR-30c, miR-145, and miR-519d in PBMCs of patients with CAD could be considered as a potential biomarker for CAD.

17.
Pharmacol Res ; 170: 105730, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34119621

RESUMEN

Chemoresistance is often referred to as a major leading reason for cancer therapy failure, causing cancer relapse and further metastasis. As a result, an urgent need has been raised to reach a full comprehension of chemoresistance-associated molecular pathways, thereby designing new therapy methods. Many of metastatic tumor masses are found to be related with a viral cause. Although combined therapy is perceived as the model role therapy in such cases, chemoresistant features, which is more common in viral carcinogenesis, often get into way of this kind of therapy, minimizing the chance of survival. Some investigations indicate that the infecting virus dominates other leading factors, i.e., genetic alternations and tumor microenvironment, in development of cancer cell chemoresistance. Herein, we have gathered the available evidence on the mechanisms under which oncogenic viruses cause drug-resistance in chemotherapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Transformación Celular Viral , Farmacorresistencia Viral , Neoplasias/tratamiento farmacológico , Virus Oncogénicos/patogenicidad , Animales , Antineoplásicos/efectos adversos , Regulación Neoplásica de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/virología , Transducción de Señal , Microambiente Tumoral
18.
Mol Ther Nucleic Acids ; 24: 487-511, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-33898103

RESUMEN

Viral infections lead to the death of more than a million people each year around the world, both directly and indirectly. Viruses interfere with many cell functions, particularly critical pathways for cell death, by affecting various intracellular mediators. MicroRNAs (miRNAs) are a major example of these mediators because they are involved in many (if not most) cellular mechanisms. Virus-regulated miRNAs have been implicated in three cell death pathways, namely, apoptosis, autophagy, and anoikis. Several molecules (e.g., BECN1 and B cell lymphoma 2 [BCL2] family members) are involved in both apoptosis and autophagy, while activation of anoikis leads to cell death similar to apoptosis. These mechanistic similarities suggest that common regulators, including some miRNAs (e.g., miR-21 and miR-192), are involved in different cell death pathways. Because the balance between cell proliferation and cell death is pivotal to the homeostasis of the human body, miRNAs that regulate cell death pathways have drawn much attention from researchers. miR-21 is regulated by several viruses and can affect both apoptosis and anoikis via modulating various targets, such as PDCD4, PTEN, interleukin (IL)-12, Maspin, and Fas-L. miR-34 can be downregulated by viral infection and has different effects on apoptosis, depending on the type of virus and/or host cell. The present review summarizes the existing knowledge on virus-regulated miRNAs involved in the modulation of cell death pathways. Understanding the mechanisms for virus-mediated regulation of cell death pathways could provide valuable information to improve the diagnosis and treatment of many viral diseases.

19.
Int Immunopharmacol ; 97: 107641, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33895478

RESUMEN

BACKGROUND: When a new pathogen, such as severe acute respiratory syndrome coronavirus 2, appears all novel information can aid in the process of monitoring and in the diagnosis of the coronavirus disease (COVID-19). The aim of the current study is to elucidate the specific miRNA profile which can act as new biomarkers for distinguishing acute COVID-19 disease from the healthy group and those in the post-acute phase of the COVID-19 disease. METHODS: The expression level of selected miRNAs including let-7b-3p, miR-29a-3p, miR-146a-3p and miR-155-5p were evaluated in peripheral blood mononuclear cells (PBMCs) of COVID-19 patients, in both the acute and post-acute COVID-19 phase of the disease and healthy groups, by real-time PCR assays. Specificity and sensitivity of miRNAs was tested by receiver operating characteristic (ROC) analysis in COVID-19 patients. RESULTS: The expression level of all miRNAs in COVID-19 patients was significantly higher than in the healthy group. Therefore, the expression pattern of miR-29a-3p, miR-146a-3p and let-7b-3p in the post-acute COVID-19 phase was significantly different from the acute COVID-19 phase. ROC analyses demonstrated that miR-29a-3p, -155-5p and -146a-3p may serve as the novel biomarker for COVID-19 diagnosis with high specificity and sensitivity. In addition, miR-29a-3p, and -146a-3p can maybe act as novel biomarkers for distinguishing acute from post-acute phase of COVID-19 disease. DISCUSSION: The difference in miRNA expression pattern between COVID-19 patients and those in the healthy group, and between acute COVID-19 with post-acute COVID-19, suggested that cellular miRNAs could be used as promising biomarkers for diagnosis and monitoring of COVID-19.


Asunto(s)
COVID-19/sangre , COVID-19/diagnóstico , Leucocitos Mononucleares/metabolismo , MicroARNs/biosíntesis , Enfermedad Aguda , Adulto , Anciano , Biomarcadores/sangre , Femenino , Perfilación de la Expresión Génica , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Curva ROC , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
Asian Pac J Cancer Prev ; 22(1): 257-266, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33507707

RESUMEN

INTRODUCTION: Central nervous system tumors are a diverse group of tumors that account for 2% of all adult cancers and 17% of childhood malignancies. Several internal and external risk factors are involved in the development of this cancer such as viral infections. The aim of this study was to the determination of the EBV infection frequency and the expression level of miR-122 and miR-BART in CNS tumors samples. METHODS: One hundred and thirty-eight  fresh tissue sample (106 case and 32 control) was collected from CNS specimens. The presence of Epstein-Barr virus (EBV) DNA was examined by PCR assay and the expression level of miR-122 and miR-BART were evaluated by using real-time PCR assay in CNS tissue samples. RESULTS: EBV DNA was detected in 17% (18 of 106) of tumors tissue samples and 6.4% (2 of 32) of control samples. according to results, there was a significant relationship between the presence of EBV-DNA with CNS tumors. Additionally, the expression level of miR-122 was significantly downregulated in the EBV-positive sample compared to that of the EBV-negative sample. Also, the level of EBV-BART1-3p expression was significantly higher in EBV-positive tumors samples than EBV-positive normal samples. CONCLUSION: The results of this study suggest that the EBV could change the condition of cancer cells by altering the expression of miR-122 and EBV-BART1-3p and maybe contribute to the development of cancer cells. However, the role of viral infections in CNS cancer requires further studies. 
.


Asunto(s)
Neoplasias Encefálicas/patología , Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4/aislamiento & purificación , MicroARNs/genética , ARN Viral/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/virología , Estudios de Casos y Controles , ADN Viral/análisis , ADN Viral/genética , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/virología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...