Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Iran J Basic Med Sci ; 25(3): 372-382, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35656175

RESUMEN

Objectives: Bioresorbable scaffolds have been advocated as the new generation in interventional cardiology because they could provide temporary scaffolds and then disappear with resorption. Although, the available stents in clinical trials exhibited biosafety, efficacy, no death, and no apparent thrombosis, Mg-substrate degradation on drug release has not been investigated. Materials and Methods: Therefore, more research has been needed to legitimize the replacement of current stents with Mg-based stents. UV-Vis spectrophotometer, scanning electron microscope (SEM), X-ray diffraction (XRD), pH measurement, H2 evolution, and corrosion tests determined the change in hybrid properties and drug release rate. Results: The effect of Mg degradation on drug release from poly-L-lactide (PLLA) specimen was much higher than that of the L605/PLLA sample. Hydrogen evolution caused by magnesium degradation compelled everolimus out without significant PLLA decomposition during the first 100 days, while formation of Mg(OH)2 caused the PLLA to deform and crack. Conclusion: A combined mechanism of lattice/hole diffusion-dissolution governed the release of everolimus with the activation energies of 5.409 kJ/mol and 4.936 kJ/mol for the first 24 hr and diffusion coefficients 6.06×10-10 and 3.64×10-11cm2/s for the 50th to 100th days. Prolonged suppression of hyperplasia within the smooth muscle cells by hybrid stent insertion could bring about the cessation of restenosis.

2.
Appl Opt ; 59(10): 3073-3080, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32400587

RESUMEN

We report the effect of the geometric parameters on transparency and conductivity in a metallic nanowire mesh as a transparent electrode. Today, indium tin oxide and fluorine-doped tin oxide are used as the transparent electrode for displays and solar cells. Still, there is a definite need for their replacement due to drawbacks such as brittleness, scarcity, and adverse environmental effects. Metallic nanowire mesh is likely the best replacement option, but the main issue is how to find the optimal structure and how to get the best performance. Since the interaction of light with nanowire mesh is complicated, there is no straightforward rule with a simple analytical solution. We developed a kit based on wave optics for calculating the optical transmission of metallic nanowire mesh, which, unlike previous works, includes the interaction of light with the nanowire mesh, such as localized surface plasmon resonance (LSPR), surface plasmon polariton (SPP), and Rayleigh anomaly (RA). So, it is possible to accurately predict the effect of these phenomena and the transmission of mesh. Using the mentioned kit, we will be able to investigate the different geometrical structures of meshes to achieve optimal geometry. This kit is based on the classical Maxwell theory and empirical data and uses finite-difference time-domain for solving equations and experiential results for validation. Comparing the results by a redefined figure of merit shows that LSPR has the most significant reduction on transparency, whereas increasing the thickness (t) to width (w) ratio of the nanowire in the metallic mesh can reduce the LSPR effect and/or shifts it to the invisible region. The wire pitch (p) has no tangible impact on LSPR, but p can be chosen higher than 700 or lower than 350 nm to remove the extinction effects of the first-order RA. If p was larger than 150 nm, SPP could appear in the visible region of the spectrum. In small p, lower modes of SPP with higher intensities occur; therefore, there is an optimum value for p around 300 nm. The reduction of t and w reduces the intensity of SPP and causes it to red shift. By comparing the 900 different structures, the highest figure of merit is obtained in a p of 300 nm with a minimum w (10 nm) and maximum t (100 nm).

3.
ACS Omega ; 4(25): 21260-21266, 2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31867520

RESUMEN

By making aligned and suspended copper nanowires, a high performance, transferable, and flexible transparent electrode is reported. Indium tin oxide is often used in devices such as displays, solar cells, and touchscreens that require transparent and conductive plates. Because of problems such as brittleness, high cost, and environmental effects, this material is facing rivals, the most serious of which are metallic nanowire meshes, especially copper. We developed a simple technique which uses a U-shaped collector in the electrospinning process with three advantages including the enhancement of the figure of merit (which is related to the surface resistance R s and the transmittance T) by about five times (about T = 90% and R s = 5 Ω/□, respectively), solving the transfer problem of the nanowire metal mesh after production, and producing aligned metal nanowires for special applications. In this work, T and R s of aligned copper nanowires were both measured and calculated, which are consistent with each other, and also, the mentioned results were compared with the work of others.

4.
ACS Omega ; 4(8): 13180-13188, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31460445

RESUMEN

The graphitic carbon nitride/tin oxide (g-C3N4/SnO2) nanocomposite synthesized under microwave irradiation was used for adsorptive removal of sulfur-containing dibenzothiophene (DBT) from Tehran vehicular gasoline. High-resolution transmission electron microscopy, X-ray powder diffraction, energy dispersive X-ray spectroscopy, Brunauer-Emmett-Teller, Fourier-transform infrared spectroscopy, and field emission scanning electron microscopy techniques determined the adsorbent characteristics, and gas chromatography with a flame ionization detector determined the DBT concentration of the samples. Application of the experimental data into the solid/fluid kinetic models indicated a chemisorption control regime that increased the removal of sulfur from the commercial samples used. A pseudo-second-order reaction with the rate constant of 0.015 (g mg-1 min-1) and total conversion time of 316 min described the adsorption process. Based on the real fuel results, the adsorption capacity of the g-C3N4/SnO2 adsorbent reached 10.64 mg S g-1 adsorbent at equilibrium conditions. This value was the highest adsorption capacity obtained so far for a commercial gasoline sample. The g-C3N4/SnO2 nanocomposite could, therefore, be introduced as an inexpensive, easily obtainable adsorbent that can significantly remove the sulfur from the vehicular gasoline fuels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA