Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1076331, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36760629

RESUMEN

Plant's perception of heat stress involves several pathways and signaling molecules, such as phosphoinositide, which is derived from structural membrane lipids phosphatidylinositol. Phospholipase C (PLC) is a well-known signaling enzyme containing many isoforms in different organisms. In the present study, Phospholipase C Isoform 5 (PLC5) was investigated for its role in thermotolerance in Arabidopsis thaliana. Two over-expressing lines and one knock-down mutant of PLC5 were first treated at a moderate temperature (37 °C) and left for recovery. Then again exposed to a high temperature (45 °C) to check the seedling viability and chlorophyll contents. Root behavior and changes in 32Pi labeled phospholipids were investigated after their exposure to high temperatures. Over-expression of PLC5 (PLC5 OE) exhibited quick and better phenotypic recovery with bigger and greener leaves followed by chlorophyll contents as compared to wild-type (Col-0) and PLC5 knock-down mutant in which seedling recovery was compromised. PLC5 knock-down mutant illustrated well-developed root architecture under controlled conditions but stunted secondary roots under heat stress as compared to over-expressing PLC5 lines. Around 2.3-fold increase in phosphatidylinositol 4,5-bisphosphate level was observed in PLC5 OE lines upon heat stress compared to wild-type and PLC5 knock-down mutant lines. A significant increase in phosphatidylglycerol was also observed in PLC5 OE lines as compared to Col-0 and PLC5 knock-down mutant lines. The results of the present study demonstrated that PLC5 over-expression contributes to heat stress tolerance while maintaining its photosynthetic activity and is also observed to be associated with primary and secondary root growth in Arabidopsis thaliana.

2.
J Appl Microbiol ; 133(5): 3094-3112, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35908279

RESUMEN

AIMS: Soil microbial communities are among the most diverse communities that might be affected due to transgenic crops. Therefore, risk assessment studies on transgenes are essentially required as any adverse effects may depend not only on the specific gene and crop involved but also on soil conditions. METHODS AND RESULTS: The present study deals with the comparison of bacterial populations, root exudates and activities of soil enzymes in nontransgenic and AVP1-transgenic wheat rhizosphere, overexpressing vacuolar H + pyrophosphatase for salinity and drought stress tolerance. Amounts of organic acids and sugars produced as root exudates and activities of dehydrogenase, phosphatase and protease enzymes in soil solution showed no significant differences in AVP1-transgenic and nontransgenic wheat rhizosphere, except for urease and phenol oxidase activities. The higher copy number of nifH gene showed the abundance of nitrogen-fixing bacteria in the rhizosphere of AVP1-transgenic wheat compared with nontransgenic wheat. nifH gene sequence analysis indicated the common diazotrophic genera Azospirillum, Bradyrhizobium, Rhizobium and Pseudomonas in AVP1-transgenic and nontransgenic wheat except for Zoogloea detected only in nontransgenic wheat. Using 454-pyrosequencing of 16S rRNA gene from soil DNA, a total of 156, 282 sequences of 18 phyla were obtained, which represented bacterial (128,006), Archeal (7928) and unclassified (21,568) sequences. Proteobacteria, Crenarchaeota and Firmicutes were the most abundant phyla in the transgenic and nontransgenic wheat rhizosphere. Further comparison of different taxonomic units at the genus level showed similar distribution in transgenic and nontransgenic wheat rhizospheres. CONCLUSION: We conclude that the AVP1 gene in transgenic wheat has no apparent adverse effects on the soil environment and different bacterial communities. However, the bacterial community depends on several other factors, not only genetic composition of the host plants. SIGNIFICANCE OF THE STUDY: The present research supports introduction and cultivation of transgenic plants in agricultural systems without any adverse effects on indigenous bacterial communities and soil ecosystems.


Asunto(s)
Microbiota , Rizosfera , Triticum/microbiología , Suelo , ARN Ribosómico 16S/genética , Microbiología del Suelo , Ureasa , Monofenol Monooxigenasa , Bacterias/genética , Microbiota/genética , Exudados y Transudados , Azúcares , Monoéster Fosfórico Hidrolasas , Péptido Hidrolasas , Pirofosfatasas
3.
Plant Physiol Biochem ; 180: 124-133, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35427995

RESUMEN

Heterologous expression of plant genes is becoming an important strategy for the improvement of specific traits in existing cultivars. This study presents the response of a salt-sensitive high-yielding wheat variety under stress-inducible expression of barley HVA1 gene belonging to the Late embryogenesis abundance (LEA) gene family. Six homozygous transgenic wheat plants were developed and advanced for testing under various water regimes and salt stress conditions. Putative transgenic plants showed better germination and root shoot development at the early developmental stages under drought stress conditions. Moreover, transgenic plants illustrated higher values of physiological features as compared to non-transgenic plants under both drought and salinity stresses that indicate improved physiological processes in transgenic plants. Higher membrane stability index (MSI) and lower electrolyte leakage (EL) after exposure to abiotic stresses reveal improved cellular membrane stability (CMS) and reduced injury to chloroplast membrane. Interestingly, under salinity stress, transgenic wheat plants showed preference towards higher K+ accumulation in the shoot, which is not a well-understood HVA1 mediated Na + avoidance mechanism under excessive subsurface salts. The predisposition of K+/Na + under salt stress conditions on heterologous expression of the HVA1 gene in wheat needs to be studied in detail in further studies.


Asunto(s)
Sequías , Triticum , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Triticum/genética , Triticum/metabolismo
4.
Environ Sci Pollut Res Int ; 27(15): 17661-17670, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32180142

RESUMEN

In modern agriculture, farm produce accumulates a lot of nitrates that can reach toxic levels owing to the unfair use of nitrogen fertilizers, cultural methods, farming policies in multiple areas of the world, thereby increasing concerns about the availability of hygienic food supply and environmental hazards. Over the past few decades, global interest in achieving greater output through intensive fertilization has been a growing trend. The fertilizer based on urea or ammonium mainly yields ammonium, which is then transformed to nitrate through the oxidation process that is biologically mediated. Nitrate tends to accumulate differently in distinct crop plants and distinct components of agricultural commodities based on species, crop variety, genetic history, environmental circumstances, harvest phase, post-harvest storage conditions, agronomic variables, nature, and fertilizer application rate. The current article highlights various factors that could directly or indirectly contribute to the accumulation of nitrates in different parts of crop plants and discusses strategies to minimize the accumulation of nitrates in farm produce, thus ensuring healthy food supply and protecting the environment from the accumulation of nitrates.


Asunto(s)
Fertilizantes , Nitratos , Agricultura , Nitrógeno , Plantas
5.
Environ Sci Pollut Res Int ; 24(35): 26983-26987, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29139074

RESUMEN

Farmers occasionally need to add nitrogen fertilizer to their farms and gardens to make available just the precise nutrients for their plants' growth. The applications of inorganic nitrogen fertilizers to various crops have been continuously increasing since last many decades globally. Although nitrogen fertilizer contributes substantially to yield enhancement, but excessive use of this manure has posed serious threats to environment and human health. Rate of nitrogen fertilizers application has a close relationship with nitrate accumulation in surrounding environment, groundwater, as well as leafy and root vegetables. Consumption of diets having high nitrate contents has contributed to endogenous nitrosation, which could lead to thyroid condition, various kinds of human cancers, neural tube defects (during fetus development), and diabetes. In this short review, the authors have tried to create awareness among general public, farming community, health practitioners, and agricultural scientists for the risk involved with excessive use of nitrogen fertilizers to human health. Carcinogenic activity and other adverse effects of N-nitroso compounds might be prevented by consuming vitamin C and antioxidants containing fruits and vegetables.


Asunto(s)
Agricultura/métodos , Productos Agrícolas/crecimiento & desarrollo , Fertilizantes/análisis , Nitrógeno/análisis , Productos Agrícolas/química , Agua Subterránea/química , Humanos , Estiércol/análisis , Nitratos/análisis , Hojas de la Planta/química , Suelo/química
6.
Biotechnol Lett ; 33(7): 1457-63, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21369907

RESUMEN

Spider venoms are neurotoxin proteins that can kill insects. Spider toxin Hvt gene was cloned under two phloem specific RSs1 and RolC promoters, transformed into tobacco plants through Agrobacterium-mediated transformation and tested against Heliothis armigera larvae. Transgenic plants were confirmed through PCR. First instar larvae of H. armigera were released on detached leaves of transformed and non-transformed plants. Insect bioassays showed 93-100% mortality of H. armigera larvae within 72 h on the leaves of transgenic plants while all larvae survived and continued feeding on detached leaves from non-transformed control plants. The Hvt gene expressing under phloem specific RSs1 and RolC promoters could therefore be used for developing H. armigera-resistant, genetically-modified crops.


Asunto(s)
Expresión Génica , Insecticidas/metabolismo , Lepidópteros/crecimiento & desarrollo , Nicotiana/parasitología , Plantas Modificadas Genéticamente/parasitología , Venenos de Araña/biosíntesis , Animales , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Lepidópteros/efectos de los fármacos , Regiones Promotoras Genéticas , Venenos de Araña/genética , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...