Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Opt Express ; 14(2): 714-738, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36874501

RESUMEN

PDT-SPACE is an open-source software tool that automates interstitial photodynamic therapy treatment planning by providing patient-specific placement of light sources to destroy a tumor while minimizing healthy tissue damage. This work extends PDT-SPACE in two ways. The first enhancement allows specification of clinical access constraints on light source insertion to avoid penetrating critical structures and to minimize surgical complexity. Constraining fiber access to a single burr hole of adequate size increases healthy tissue damage by 10%. The second enhancement generates an initial placement of light sources as a starting point for refinement, rather than requiring entry of a starting solution by the clinician. This feature improves productivity and also leads to solutions with 4.5% less healthy tissue damage. The two features are used in concert to perform simulations of various surgery options of virtual glioblastoma multiforme brain tumors.

2.
J Biomed Opt ; 27(8)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35380030

RESUMEN

SIGNIFICANCE: Open-source software packages have been extensively used in the past three decades in medical imaging and diagnostics, aiming to study the feasibility of the application ex vivo. Unfortunately, most of the existing open-source tools require some software engineering background to install the prerequisite libraries, choose a suitable computational platform, and combine several software tools to address different applications. AIM: To facilitate the use of open-source software in medical applications, enabling computational studies of treatment outcomes prior to the complex in-vivo setting. APPROACH: FullMonteWeb, an open-source, user-friendly web-based software with a graphical user interface for interstitial photodynamic therapy (iPDT) modeling, visualization, and optimization, is introduced. The software can perform Monte Carlo simulations of light propagation in biological tissues, along with iPDT plan optimization. FullMonteWeb installs and runs the required software and libraries on Amazon Web Services (AWS), allowing scalable computing without complex set up. RESULTS: FullMonteWeb allows simulation of large and small problems on the most appropriate compute hardware, enabling cost improvements of 10 × versus always running on a single platform. Case studies in optical property estimation and diffuser placement optimization highlight FullMonteWeb's versatility. CONCLUSION: The FullMonte open source suite enables easier and more cost-effective in-silico studies for iPDT.


Asunto(s)
Fotoquimioterapia , Simulación por Computador , Método de Montecarlo , Programas Informáticos
3.
Sci Rep ; 11(1): 17871, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504208

RESUMEN

Spinal metastases often occur in the advanced stages of breast, lung or prostate cancer, resulting in a significant impact on the patient's quality of life. Current treatment modalities for spinal metastases include both systemic and localized treatments that aim to decrease pain, improve mobility and structural stability, and control tumour growth. With the development of non-toxic photosensitizer drugs, photodynamic therapy (PDT) has shown promise as a minimally invasive non-thermal alternative in oncology, including for spinal metastases. To apply PDT to spinal metastases, predictive algorithms that optimize tumour treatment and minimize the risk of spinal cord damage are needed to assess the feasibility of the treatment and encourage a broad acceptance of PDT in clinical trials. This work presents a framework for PDT modelling and planning, and simulates the feasibility of using a BPD-MA mediated PDT to treat bone metastases at two different wavelengths (690 nm and 565 nm). An open-source software for PDT planning, PDT-SPACE, is used to evaluate different configurations of light diffusers (cut-end and cylindrical) fibres with optimized power allocation in order to minimize the damage to spinal cord or maximize tumour destruction. The work is simulated on three CT images of metastatically involved vertebrae acquired from three patients with spinal metastases secondary to colorectal or lung cancer. Simulation results show that PDT at a 565 nm wavelength has the ability to treat 90% of the metastatic lesion with less than 17% damage to the spinal cord. However, the energy required, and hence treatment time, to achieve this outcome with the 565 nm is infeasible. The energy required and treatment time for the longer wavelength of 690 nm is feasible ([Formula: see text] min), but treatment aimed at 90% of the metastatic lesion would severely damage the proximal spinal cord. PDT-SPACE provides a simulation platform that can be used to optimize PDT delivery in the metastatic spine. While this work serves as a prospective methodology to analyze the feasibility of PDT for tumour ablation in the spine, preclinical studies in an animal model are ongoing to elucidate the spinal cord damage extent as a function of PDT dose, and the resulting short and long term functional impairments. These will be required before there can be any consideration of clinical trials.


Asunto(s)
Metástasis de la Neoplasia/patología , Fotoquimioterapia , Fármacos Fotosensibilizantes/uso terapéutico , Neoplasias de la Columna Vertebral/terapia , Humanos , Fotoquimioterapia/métodos , Estudios Prospectivos , Calidad de Vida , Neoplasias de la Columna Vertebral/secundario , Columna Vertebral/patología , Verteporfina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA