Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 12535, 2024 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821999

RESUMEN

Cassava root rot disease caused by the fungal pathogens Fusarium solani and Lasiodiplodia theobromae produces severe damages on cassava production. This research was conducted to produce and assess silver nanoparticles (AgNPs) synthesized by Trichoderma harzianum for reducing root rot disease. The results revealed that using the supernatants of T. harzianum on a silver nitrate solution changed it to reddish color at 48 h, indicating the formation of AgNPs. Further characterization was identified using dynamic light scattering (DLS) and scanning electron microscope (SEM). DLS supported that the Z-average size is at 39.79 nm and the mean zeta potential is at - 36.5 mV. SEM revealed the formation of monodispersed spherical shape with a diameter between 60-75 nm. The antibacterial action of AgNPs as an antifungal agent was demonstrated by an observed decrease in the size of the fungal colonies using an increasing concentration of AgNPs until the complete inhibition growth of L. theobromae and F. solani at > 58 µg mL-1 and at ≥ 50 µg mL-1, respectively. At in vitro conditions, the applied AgNPs caused a decrease in the percentage of healthy aerial hyphae of L. theobromae (32.5%) and of F. solani (70.0%) compared to control (100%). The SR-FTIR spectra showed the highest peaks in the first region (3000-2800 cm-1) associated with lipids and fatty acids located at 2962, 2927, and 2854 cm-1 in the AgNPs treated samples. The second region (1700-1450 cm-1) consisting of proteins and peptides revealed the highest peaks at 1658, 1641, and 1548 cm-1 in the AgNPs treated samples. The third region (1300-900 cm-1), which involves nucleic acid, phospholipids, polysaccharides, and carbohydrates, revealed the highest peaks at 1155, 1079, and 1027 cm-1 in the readings from the untreated samples. Finally, the observed root rot severity on cassava roots treated with AgNPs (1.75 ± 0.50) was significantly lower than the control samples (5.00 ± 0.00).


Asunto(s)
Manihot , Nanopartículas del Metal , Enfermedades de las Plantas , Raíces de Plantas , Plata , Nanopartículas del Metal/química , Plata/química , Plata/farmacología , Enfermedades de las Plantas/microbiología , Manihot/microbiología , Manihot/química , Raíces de Plantas/microbiología , Fusarium/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/química , Hypocreales/metabolismo , Hypocreales/efectos de los fármacos , Trichoderma/metabolismo
2.
Foods ; 11(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36553796

RESUMEN

In Thailand new edible cassava varieties have been developed to be used in the food industry. The aim of this research was to analyze the difference between flour from three cassava varieties and to evaluate the suitability and quality of flour for gluten-free muffins. The physico-chemical properties of flour from three varieties were studied. The results showed the moisture content of flour was between 10.65 ± 0.01 and 10.85 ± 0.45%. Total protein content was highly significant with a difference of 1.97 ± 0.00%, 2.15 ± 0.01%, and 2.18 ± 0.01%, respectively. Moreover, ash and fat in each flour were highly significant. Amylose content was 19.93 ± 0.47%, and the viscosity was 6286.00 ± 1.52 mPa.s. The color of flour values of L* a* b* value was not statistically different in each variety of flour. Fourier transform infrared spectroscopy (FTIR) analysis was used for the biochemical change in flour. The PCA and cluster analysis results revealed that cassava flour from Pirun 6 was different from Pirun 2 and Pirun 4. After that, the test using selected cassava flour from Pirun 6 to test the physical properties and sensory attributes of gluten-free muffins compared with wheat flour found that gluten-free muffins were overall better than basic muffins.

3.
Front Mol Biosci ; 9: 1010603, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213126

RESUMEN

Manihot esculenta, commonly called cassava, is an economically valuable crop and important staple food, grown in tropical and subtropical regions of the world. Demand for cassava in the food and fuel industry is growing worldwide. However, anthracnose disease caused by Colletotrichum gloeosporioides severely affects cassava yield and production. The bioactive molecules from Bacillus are widely used to control fungal diseases in several plants. Therefore, in this study, bioactive compounds (erucamide, behenic acid, palmitic acid, phenylacetic acid, and ß-sitosterol) from Bacillus megaterium were assessed against CDC42, a key protein for virulence, from C. gloeosporioides. Structure of the CDC42 protein was generated through the comparative homology modeling method. The binding site of the ligands and the stability of the complex were analyzed through docking and molecular dynamics simulation studies, respectively. Furthermore, a protein interaction network was envisaged through the STRING database, followed by enrichment analysis in the WebGestalt tool. From the enrichment analysis, it is apparent that bioactive from B. megaterium chiefly targets the MAP kinase pathway that is essential for filamentous growth and virulence. Further exploration through experimental studies could be advantageous for cassava improvement as well as to combat against C. gloeosporioides pathogen.

4.
Plant Pathol J ; 38(3): 212-219, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35678054

RESUMEN

Fusarium root rot caused by the soil-borne fungus Fusarium solani is one of the most important fungal diseases of cassava in Thailand, resulting in high yield losses of more than 80%. This study aimed to investigate if the exogenous application of salicylic acid formulations (Zacha) can induce resistance in cassava against Fusarium root rot and observe the biochemical changes in induced cassava leaf tissues through synchrotron radiation based on Fourier-transform infrared (SR-FTIR) microspectroscopy. We demonstrated that the application of Zacha11 prototype formulations could induce resistance against Fusarium root rot in cassava. The in vitro experimental results showed that Zacha11 prototype formulations inhibited the growth of F. solani at approximately 34.83%. Furthermore, a significant reduction in the disease severity of Fusarium root rot disease at 60 days after challenge inoculation was observed in cassava plants treated with Zacha11 at a concentration of 500 ppm (9.0%). Population densities of F. solani were determined at 7 days after inoculation. Treatment of the Zacha11 at a concentration of 500 ppm resulted in reduced populations compared with the distilled water control and differences among treatment means at each assay date. Moreover, the SR-FTIR spectral changes of Zacha11-treated epidermal tissues of leaves had higher integral areas of lipids, lignins, and pectins (1,770-1,700/cm), amide I (1,700-1,600/cm), amide II (1,600-1,500/cm), hemicellulose, lignin (1,300-1,200/cm), and cellulose (1,155/cm). Therefore, alteration in defensive carbohydrates, lipids, and proteins contributed to generate barriers against Fusarium invasion in cassava roots, leading to lower the root rot disease severity.

5.
Polymers (Basel) ; 14(4)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35215572

RESUMEN

Leaf spot is one of the most important cassava diseases. Nanotechnology can be applied to control diseases and improve plant growth. This study was performed to prepare chitosan (CS) nanoparticle (NP)-loaded salicylic acid (SA) or silver (Ag) by the ionic gelation method, and to evaluate their effectiveness on reducing leaf spot disease and enhancing the growth of cassava plants. The CS (0.4 or 0.5%) and Pentasodium triphosphate (0.2 or 0.5%) were mixed with SA varying at 0.05, 0.1, or 0.2% or silver nitrate varying at 1, 2, or 3 mM to prepare three formulations of CS-NP-loaded SA named N1, N2, and N3 or CS-NP-loaded Ag named N4, N5, and N6. The results showed that the six formulations were not toxic to cassava leaves up to 800 ppm. The CS-NP-loaded SA (N3) and CS-NP-loaded Ag (N6) were more effective than the remaining formulations in reducing the disease severity and the disease index of leaf spot. Furthermore, N3 at 400 ppm and N6 at 200, 400, and 800 ppm could reduce disease severity (68.9-73.6% or 37.0-37.7%, depending on the time of treatment and the pathogen density) and enhance plant growth more than or equal to commercial fungicide or nano-fungicide products under net-house conditions. The study indicates the potential to use CS-NP-loaded SA or Ag as elicitors to manage cassava leaf spot disease.

6.
Polymers (Basel) ; 14(4)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35215574

RESUMEN

By 2050, population growth and climate change will lead to increased demand for food and water. Nanoparticles (NPs), an advanced technology, can be applied to many areas of agriculture, including crop protection and growth enhancement, to build sustainable agricultural production. Ionic gelation method is a synthesis of microparticles or NPs, based on an electrostatic interaction between opposite charge types that contains at least one polymer under mechanical stirring conditions. NPs, which are commonly based on chitosan (CS), have been applied to many agricultural fields, including nanopesticides, nanofertilizers, and nanoherbicides. The CS-NP or CS-NPs-loaded active ingredients (Cu, saponin, harpin, Zn, hexaconazole, salicylic acid (SA), NPK, thiamine, silicon, and silver (Ag)) are effective in controlling plant diseases and enhancing plant growth, depending on the concentration and application method by direct and indirect mechanisms, and have attracted much attention in the last five years. Many crops have been evaluated in in vivo or in greenhouse conditions but only maize (CS-NP-loaded Cu, Zn, SA, and silicon) and soybean (CS-NP-loaded Cu) were tested for manage post flowering stalk rot, Curvularia leaf spot, and bacterial pustule disease in field condition. Since 2019, five of eight studies have been performed in field conditions that have shown interest in CS-NPs synthesized by the ionic gelation method. In this review, we summarized the current state of research and provided a forward-looking view of the use of CS-NPs in plant disease management.

7.
J Biomol Struct Dyn ; 40(4): 1472-1479, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33047664

RESUMEN

Fusarium oxysporum causes significant economic losses in many crop plants by causing root rot, necrosis, and wilting symptoms. Homology and molecular dynamics studies are promising tools for the detection in F. oxysporum of the systemic resistance compound, salicylic acid, for control of the SKP1-CUL1-F-box protein complex. The structure of SKP1-CUL1-F-box subunit Skp1 from F. oxysporum is produced by Modeler 9v7 for the conduct of docking studies. The Skp1 structure is based on the yeast Cdc4/Skp1 (PDB ID: 3MKS A) crystal structure collected by the Protein data bank. Applying molecular dynamic model simulation methods to the final predicted structure and further evaluated by 3D and PROCHECK test programmers, the final model is verified to be accurate. Applying GOLD 3.0.1, SCF Complex Skp1 is used to prevent stress-tolerant operation. The SKP1-CUL1-F-box model is predicted to be stabilized and tested as a stable docking structure. The predicted model of the SCF structure has been stabilized and confirmed to be a reliable structure for docking studies. The results indicated that GLN8, LYS9, VAL10, TRP11, GLU48, ASN49 in SCF complex are important determinant residues in binding as they have strong hydrogen bonding with salicylic acid, which showed best docking results with SKP1-CUL1-F-box complex subunit Skp1 with docking score 25.25KJ/mol. Insilco studies have been used to determine the mode of action of salicylic acid for Fusarium control. Salicylic acid hinders the SKP1-CUL1-F-box complex, which is important in protein-like interactions through hydrogen bodings. Results from docking studies have shown that the best energy for SKP1-CUL1-F-box was salicylic acid.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Proteínas F-Box , Fusarium , Proteínas Cullin/química , Proteínas Cullin/metabolismo , Proteínas F-Box/química , Proteínas F-Box/metabolismo , Simulación de Dinámica Molecular , Ácido Salicílico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA