Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 49(11): 6196-6212, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34086947

RESUMEN

Retinoblastoma-binding proteins 4 and 7 (RBBP4 and RBBP7) are two highly homologous human histone chaperones. They function in epigenetic regulation as subunits of multiple chromatin-related complexes and have been implicated in numerous cancers. Due to their overlapping functions, our understanding of RBBP4 and 7, particularly outside of Opisthokonts, has remained limited. Here, we report that in the ciliate protozoan Tetrahymena thermophila a single orthologue of human RBBP4 and 7 proteins, RebL1, physically interacts with histone H4 and functions in multiple epigenetic regulatory pathways. Functional proteomics identified conserved functional links for Tetrahymena RebL1 protein as well as human RBBP4 and 7. We found that putative subunits of multiple chromatin-related complexes including CAF1, Hat1, Rpd3, and MuvB, co-purified with RebL1 during Tetrahymena growth and conjugation. Iterative proteomics analyses revealed that the cell cycle regulatory MuvB-complex in Tetrahymena is composed of at least five subunits including evolutionarily conserved Lin54, Lin9 and RebL1 proteins. Genome-wide analyses indicated that RebL1 and Lin54 (Anqa1) bind within genic and intergenic regions. Moreover, Anqa1 targets primarily promoter regions suggesting a role for Tetrahymena MuvB in transcription regulation. RebL1 depletion inhibited cellular growth and reduced the expression levels of Anqa1 and Lin9. Consistent with observations in glioblastoma tumors, RebL1 depletion suppressed DNA repair protein Rad51 in Tetrahymena, thus underscoring the evolutionarily conserved functions of RBBP4/7 proteins. Our results suggest the essentiality of RebL1 functions in multiple epigenetic regulatory complexes in which it impacts transcription regulation and cellular viability.


Asunto(s)
Chaperonas de Histonas/metabolismo , Proteínas Protozoarias/metabolismo , Tetrahymena thermophila/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Evolución Biológica , Secuencia Conservada , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Expresión Génica , Células HEK293 , Chaperonas de Histonas/química , Chaperonas de Histonas/fisiología , Histonas/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/mortalidad , Oncogenes , Proteínas Protozoarias/química , Proteínas Protozoarias/fisiología , Proteína 4 de Unión a Retinoblastoma/metabolismo , Proteína 7 de Unión a Retinoblastoma/metabolismo , Tetrahymena thermophila/genética , Tetrahymena thermophila/crecimiento & desarrollo
2.
Front Cell Dev Biol ; 8: 509, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32695779

RESUMEN

The eukaryotic histone acetylation cycle is composed of three classes of proteins, histone acetyltransferases (HATs) that add acetyl groups to lysine amino acids, bromodomain (BRD) containing proteins that are one of the most characterized of several protein domains that recognize acetyl-lysine (Kac) and effect downstream function, and histone deacetylases (HDACs) that catalyze the reverse reaction. Dysfunction of selected proteins of these three classes is associated with human disease such as cancer. Additionally, the HATs, BRDs, and HDACs of fungi and parasitic protozoa present potential drug targets. Despite their importance, the function and mechanisms of HATs, BRDs, and HDACs and how they relate to chromatin remodeling (CR) remain incompletely understood. Tetrahymena thermophila (Tt) provides a highly tractable single-celled free-living protozoan model for studying histone acetylation, featuring a massively acetylated somatic genome, a property that was exploited in the identification of the first nuclear/type A HAT Gcn5 in the 1990s. Since then, Tetrahymena remains an under-explored model for the molecular analysis of HATs, BRDs, and HDACs. Studies of HATs, BRDs, and HDACs in Tetrahymena have the potential to reveal the function of HATs and BRDs relevant to both fundamental eukaryotic biology and to the study of disease mechanisms in parasitic protozoa.

3.
Sci Rep ; 10(1): 168, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31932604

RESUMEN

Chromatin organization influences most aspects of gene expression regulation. The linker histone H1, along with the core histones, is a key component of eukaryotic chromatin. Despite its critical roles in chromatin structure and function and gene regulation, studies regarding the H1 protein-protein interaction networks, particularly outside of Opisthokonts, are limited. The nuclear dimorphic ciliate protozoan Tetrahymena thermophila encodes two distinct nucleus-specific linker histones, macronuclear Hho1 and micronuclear Mlh1. We used a comparative proteomics approach to identify the Hho1 and Mlh1 protein-protein interaction networks in Tetrahymena during growth, starvation, and sexual development. Affinity purification followed by mass spectrometry analysis of the Hho1 and Mlh1 proteins revealed a non-overlapping set of co-purifying proteins suggesting that Tetrahymena nucleus-specific linker histones are subject to distinct regulatory pathways. Furthermore, we found that linker histones interact with distinct proteins under the different stages of the Tetrahymena life cycle. Hho1 and Mlh1 co-purified with several Tetrahymena-specific as well as conserved interacting partners involved in chromatin structure and function and other important cellular pathways. Our results suggest that nucleus-specific linker histones might be subject to nucleus-specific regulatory pathways and are dynamically regulated under different stages of the Tetrahymena life cycle.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/metabolismo , Histonas/metabolismo , Homólogo 1 de la Proteína MutL/metabolismo , Proteoma/análisis , Proteínas Protozoarias/metabolismo , Tetrahymena thermophila/crecimiento & desarrollo , Secuencia de Aminoácidos , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Regulación de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/genética , Homólogo 1 de la Proteína MutL/genética , Dominios y Motivos de Interacción de Proteínas , Proteínas Protozoarias/genética , Inanición , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo
4.
BMC Bioinformatics ; 20(1): 533, 2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31664892

RESUMEN

BACKGROUND: Chromatin immunoprecipitation coupled to next generation sequencing (ChIP-Seq) is a widely-used molecular method to investigate the function of chromatin-related proteins by identifying their associated DNA sequences on a genomic scale. ChIP-Seq generates large quantities of data that is difficult to process and analyze, particularly for organisms with a contig-based sequenced genomes that typically have minimal annotation on their associated set of genes other than their associated coordinates primarily predicted by gene finding programs. Poorly annotated genome sequence makes comprehensive analysis of ChIP-Seq data difficult and as such standardized analysis pipelines are lacking. RESULTS: We present a one-stop computational pipeline, "Rapid Analysis of ChIP-Seq data" (RACS), that utilizes traditional High-Performance Computing (HPC) techniques in association with open source tools for processing and analyzing raw ChIP-Seq data. RACS is an open source computational pipeline available from any of the following repositories https://bitbucket.org/mjponce/RACS or https://gitrepos.scinet.utoronto.ca/public/?a=summary&p=RACS . RACS is particularly useful for ChIP-Seq in organisms with contig-based genomes that have poor gene annotation to aid protein function discovery.To test the performance and efficiency of RACS, we analyzed ChIP-Seq data previously published in a model organism Tetrahymena thermophila which has a contig-based genome. We assessed the generality of RACS by analyzing a previously published data set generated using the model organism Oxytricha trifallax, whose genome sequence is also contig-based with poor annotation. CONCLUSIONS: The RACS computational pipeline presented in this report is an efficient and reliable tool to analyze genome-wide raw ChIP-Seq data generated in model organisms with poorly annotated contig-based genome sequence. Because RACS segregates the found read accumulations between genic and intergenic regions, it is particularly efficient for rapid downstream analyses of proteins involved in gene expression.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Genoma , Mapeo Cromosómico , Genómica/métodos , Humanos , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN
5.
Curr Biol ; 29(14): 2371-2379.e6, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31280994

RESUMEN

Mediator is a large protein complex required for basal and regulated expression of most RNA polymerase II (RNAP II)-transcribed genes, in part due to its interaction with and phosphorylation of the conserved C-terminal domain (CTD) of Rpb1 [1, 2]. Mediator has been implicated in many aspects of gene expression including chromatin looping [3], higher-order chromatin folding [4], mRNA processing [5] and export [6], and transcriptional memory [7]. Mediator is thought to have played a major role during eukaryotic diversification [8, 9], although its function remains unknown in evolutionarily deep branching eukaryotes lacking canonical CTD heptad repeats. We used the ciliate protozoan Tetrahymena thermophila as a model organism whose genome encodes a highly divergent Rpb1 lacking canonical CTD heptad repeats. We endogenously tagged the Med31 subunit of the Mediator complex and performed affinity purification coupled with mass spectrometry (AP-MS) to identify Mediator subunits. We found that Med31 physically interacts with a large number of proteins (>20), several of which share similarities to canonical Mediator subunits in yeast and humans as well as Tetrahymena-specific proteins. Furthermore, Med31 ChIP-seq analysis suggested a global role for Mediator in transcription regulation. We demonstrated that MED31 knockdown in growing Tetrahymena results in the ectopic expression of developmental genes important for programmed DNA rearrangements. In addition, indirect immunofluorescence revealed Med31 localization in meiotic micronuclei, implicating Mediator in RNAPII-dependent ncRNA transcription. Our results reveal structural and functional insights and implicate Mediator as an ancient cellular machinery for transcription regulation with a possible involvement in global transcription of ncRNAs.


Asunto(s)
Complejo Mediador/genética , Proteínas Protozoarias/genética , ARN Protozoario/genética , ARN no Traducido/genética , Tetrahymena thermophila/genética , Transcripción Genética , Núcleo Celular/metabolismo , Complejo Mediador/metabolismo , Meiosis , Proteínas Protozoarias/metabolismo , ARN Protozoario/metabolismo , ARN no Traducido/metabolismo , Tetrahymena thermophila/metabolismo
6.
Genes (Basel) ; 10(5)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31052454

RESUMEN

Identification and characterization of protein complexes and interactomes has been essential to the understanding of fundamental nuclear processes including transcription, replication, recombination, and maintenance of genome stability. Despite significant progress in elucidation of nuclear proteomes and interactomes of organisms such as yeast and mammalian systems, progress in other models has lagged. Protists, including the alveolate ciliate protozoa with Tetrahymena thermophila as one of the most studied members of this group, have a unique nuclear biology, and nuclear dimorphism, with structurally and functionally distinct nuclei in a common cytoplasm. These features have been important in providing important insights about numerous fundamental nuclear processes. Here, we review the proteomic approaches that were historically used as well as those currently employed to take advantage of the unique biology of the ciliates, focusing on Tetrahymena, to address important questions and better understand nuclear processes including chromatin biology of eukaryotes.


Asunto(s)
Infecciones por Cilióforos/genética , Proteínas Nucleares/genética , Proteómica , Tetrahymena thermophila/genética , Núcleo Celular/genética , Núcleo Celular/parasitología , Cromatina/genética , Cromatina/parasitología , Infecciones por Cilióforos/parasitología , Citoplasma/genética , Citoplasma/parasitología , Humanos , Tetrahymena thermophila/patogenicidad
7.
Mol Biol Evol ; 36(5): 1037-1055, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30796450

RESUMEN

Epigenetic information, which can be passed on independently of the DNA sequence, is stored in part in the form of histone posttranslational modifications and specific histone variants. Although complexes necessary for deposition have been identified for canonical and variant histones, information regarding the chromatin assembly pathways outside of the Opisthokonts remains limited. Tetrahymena thermophila, a ciliated protozoan, is particularly suitable to study and unravel the chromatin regulatory layers due to its unique physical separation of chromatin states in the form of two distinct nuclei present within the same cell. Using a functional proteomics pipeline, we carried out affinity purification followed by mass spectrometry of endogenously tagged T. thermophila histones H2A, H2B and variant Hv1.We identified a set of interacting proteins shared among the three analyzed histones that includes the FACT-complex, as well as H2A- or Hv1-specific chaperones. We find that putative subunits of T. thermophila versions of SWR- and INO80-complexes, as well as transcription-related histone chaperone Spt6Tt specifically copurify with Hv1. We also identified importin ß6 and the T. thermophila ortholog of nucleoplasmin 1 (cNpl1Tt) as H2A-H2B interacting partners. Our results further implicate Poly [ADP-ribose] polymerases in histone metabolism. Molecular evolutionary analysis, reciprocal affinity purification coupled to mass spectrometry experiments, and indirect immunofluorescence studies using endogenously tagged Spt16Tt (FACT-complex subunit), cNpl1Tt, and PARP6Tt underscore the validity of our approach and offer mechanistic insights. Our results reveal a highly conserved regulatory network for H2A (Hv1)-H2B concerning their nuclear import and assembly into chromatin.


Asunto(s)
Evolución Molecular , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Tetrahymena thermophila/metabolismo , Secuencia de Aminoácidos , Filogenia , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteoma , Proteómica
8.
Epigenetics Chromatin ; 11(1): 10, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523178

RESUMEN

BACKGROUND: The chromatin remodelers of the SWI/SNF family are critical transcriptional regulators. Recognition of lysine acetylation through a bromodomain (BRD) component is key to SWI/SNF function; in most eukaryotes, this function is attributed to SNF2/Brg1. RESULTS: Using affinity purification coupled to mass spectrometry (AP-MS) we identified members of a SWI/SNF complex (SWI/SNFTt) in Tetrahymena thermophila. SWI/SNFTt is composed of 11 proteins, Snf5Tt, Swi1Tt, Swi3Tt, Snf12Tt, Brg1Tt, two proteins with potential chromatin-interacting domains and four proteins without orthologs to SWI/SNF proteins in yeast or mammals. SWI/SNFTt subunits localize exclusively to the transcriptionally active macronucleus during growth and development, consistent with a role in transcription. While Tetrahymena Brg1 does not contain a BRD, our AP-MS results identified a BRD-containing SWI/SNFTt component, Ibd1 that associates with SWI/SNFTt during growth but not development. AP-MS analysis of epitope-tagged Ibd1 revealed it to be a subunit of several additional protein complexes, including putative SWRTt, and SAGATt complexes as well as a putative H3K4-specific histone methyl transferase complex. Recombinant Ibd1 recognizes acetyl-lysine marks on histones correlated with active transcription. Consistent with our AP-MS and histone array data suggesting a role in regulation of gene expression, ChIP-Seq analysis of Ibd1 indicated that it primarily binds near promoters and within gene bodies of highly expressed genes during growth. CONCLUSIONS: Our results suggest that through recognizing specific histones marks, Ibd1 targets active chromatin regions of highly expressed genes in Tetrahymena where it subsequently might coordinate the recruitment of several chromatin-remodeling complexes to regulate the transcriptional landscape of vegetatively growing Tetrahymena cells.


Asunto(s)
Proteínas Nucleares/metabolismo , Proteómica/métodos , Tetrahymena thermophila/crecimiento & desarrollo , Epigénesis Genética , Regulación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Espectrometría de Masas , Proteínas Protozoarias/metabolismo , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...