Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 16(2): 357-367, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27346344

RESUMEN

The molecular clock relies on a delayed negative feedback loop of transcriptional regulation to generate oscillating gene expression. Although the principal components of the clock are present in all circadian neurons, different neuronal clusters have varying effects on rhythmic behavior, suggesting that the clocks they house are differently regulated. Combining biochemical and genetic techniques in Drosophila, we identify a phosphorylation program native to the master pacemaker neurons that regulates the timing of nuclear accumulation of the Period/Timeless repressor complex. GSK-3/SGG binds and phosphorylates Period-bound Timeless, triggering a CK2-mediated phosphorylation cascade. Mutations that block the hierarchical phosphorylation of Timeless in vitro also delay nuclear accumulation in both tissue culture and in vivo and predictably change rhythmic behavior. This two-kinase phosphorylation cascade is anatomically restricted to the eight master pacemaker neurons, distinguishing the regulatory mechanism of the molecular clock within these neurons from the other clocks that cooperate to govern behavioral rhythmicity.


Asunto(s)
Quinasa de la Caseína II/fisiología , Relojes Circadianos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Glucógeno Sintasa Quinasa 3/fisiología , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Animales , Línea Celular , Núcleo Celular/metabolismo , Secuencia Conservada , Fosforilación , Procesamiento Proteico-Postraduccional
2.
Methods Enzymol ; 551: 3-27, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25662449

RESUMEN

The power of Drosophila melanogaster as a model organism lies in its ability to be used for large-scale genetic screens with the capacity to uncover the genetic basis of biological processes. In particular, genetic screens for circadian behavior, which have been performed since 1971, allowed researchers to make groundbreaking discoveries on multiple levels: they discovered that there is a genetic basis for circadian behavior, they identified the so-called core clock genes that govern this process, and they started to paint a detailed picture of the molecular functions of these clock genes and their encoded proteins. Since the discovery that fruit flies sleep in 2000, researchers have successfully been using genetic screening to elucidate the many questions surrounding this basic animal behavior. In this chapter, we briefly recall the history of circadian rhythm and sleep screens and then move on to describe techniques currently employed for mutagenesis and genetic screening in the field. The emphasis lies on comparing the newer approaches of transgenic RNA interference (RNAi) to classical forms of mutagenesis, in particular in their application to circadian behavior and sleep. We discuss the different screening approaches in light of the literature and published and unpublished sleep and rhythm screens utilizing ethyl methanesulfonate mutagenesis and transgenic RNAi from our lab.


Asunto(s)
Ritmo Circadiano/genética , Drosophila melanogaster/genética , Estudios de Asociación Genética/métodos , Sueño/genética , Animales , Drosophila melanogaster/fisiología , Técnicas de Silenciamiento del Gen , Pruebas Genéticas , Humanos , Mutagénesis , Mutación
3.
PLoS Genet ; 11(2): e1004974, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25674790

RESUMEN

Regulated nuclear entry of clock proteins is a conserved feature of eukaryotic circadian clocks and serves to separate the phase of mRNA activation from mRNA repression in the molecular feedback loop. In Drosophila, nuclear entry of the clock proteins, PERIOD (PER) and TIMELESS (TIM), is tightly controlled, and impairments of this process produce profound behavioral phenotypes. We report here that nuclear entry of PER-TIM in clock cells, and consequently behavioral rhythms, require a specific member of a classic nuclear import pathway, Importin α1 (IMPα1). In addition to IMPα1, rhythmic behavior and nuclear expression of PER-TIM require a specific nuclear pore protein, Nup153, and Ran-GTPase. IMPα1 can also drive rapid and efficient nuclear expression of TIM and PER in cultured cells, although the effect on PER is mediated by TIM. Mapping of interaction domains between IMPα1 and TIM/PER suggests that TIM is the primary cargo for the importin machinery. This is supported by attenuated interaction of IMPα1 with TIM carrying a mutation previously shown to prevent nuclear entry of TIM and PER. TIM is detected at the nuclear envelope, and computational modeling suggests that it contains HEAT-ARM repeats typically found in karyopherins, consistent with its role as a co-transporter for PER. These findings suggest that although PER is the major timekeeper of the clock, TIM is the primary target of nuclear import mechanisms. Thus, the circadian clock uses specific components of the importin pathway with a novel twist in that TIM serves a karyopherin-like role for PER.


Asunto(s)
Transporte Activo de Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Circadianas Period/metabolismo , alfa Carioferinas/metabolismo , Animales , Núcleo Celular/genética , Ritmo Circadiano , Citoplasma/metabolismo , Drosophila , Proteínas de Drosophila/genética , Inmunoprecipitación , Proteínas Circadianas Period/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Interferencia de ARN , ARN Mensajero/genética , ARN de Transferencia/genética , alfa Carioferinas/genética
4.
J Biol Chem ; 286(31): 27654-62, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21659538

RESUMEN

Robust circadian oscillations of the proteins PERIOD (PER) and TIMELESS (TIM) are hallmarks of a functional clock in the fruit fly Drosophila melanogaster. Early morning phosphorylation of PER by the kinase Doubletime (DBT) and subsequent PER turnover is an essential step in the functioning of the Drosophila circadian clock. Here using time-lapse fluorescence microscopy we study PER stability in the presence of DBT and its short, long, arrhythmic, and inactive mutants in S2 cells. We observe robust PER degradation in a DBT allele-specific manner. With the exception of doubletime-short (DBT(S)), all mutants produce differential PER degradation profiles that show direct correspondence with their respective Drosophila behavioral phenotypes. The kinetics of PER degradation with DBT(S) in cell culture resembles that with wild-type DBT and posits that, in flies DBT(S) likely does not modulate the clock by simply affecting PER degradation kinetics. For all the other tested DBT alleles, the study provides a simple model in which the changes in Drosophila behavioral rhythms can be explained solely by changes in the rate of PER degradation.


Asunto(s)
Caseína Cinasa 1 épsilon/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Circadianas Period/metabolismo , Animales , Conducta Animal , Línea Celular , Clonación Molecular , Drosophila melanogaster , Semivida , Hidrólisis , Cinética , Microscopía Fluorescente , Fosforilación
5.
Genetics ; 188(3): 591-600, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21515571

RESUMEN

Regulated nuclear entry of the Period (PER) and Timeless (TIM) proteins, two components of the Drosophila circadian clock, is essential for the generation and maintenance of circadian behavior. PER and TIM shift from the cytoplasm to the nucleus daily, and the length of time that PER and TIM reside in the cytoplasm is an important determinant of the period length of the circadian rhythm. Here we identify a TIM nuclear localization signal (NLS) that is required for appropriately timed nuclear accumulation of both TIM and PER. Transgenic flies with a mutated TIM NLS produced circadian rhythms with a period of ∼30 hr. In pacemaker cells of the brain, PER and TIM proteins rise to abnormally high levels in the cytoplasm of tim(ΔNLS) mutants, but show substantially reduced nuclear accumulation. In cultured S2 cells, the mutant TIM(ΔNLS) protein significantly delays nuclear accumulation of both TIM and wild-type PER proteins. These studies confirm that TIM is required for the nuclear localization of PER and point to a key role for the TIM NLS in the regulated nuclear accumulation of both proteins.


Asunto(s)
Núcleo Celular/metabolismo , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Citoplasma/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Señales de Localización Nuclear , Proteínas Circadianas Period/metabolismo , Animales , Animales Modificados Genéticamente , Northern Blotting , Western Blotting , Núcleo Celular/genética , Células Cultivadas , Cruzamientos Genéticos , Citoplasma/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Microscopía Confocal , Señales de Localización Nuclear/deficiencia , Señales de Localización Nuclear/genética , Proteínas Circadianas Period/genética , Transporte de Proteínas/fisiología , Eliminación de Secuencia , Transcripción Genética
6.
PLoS Biol ; 6(7): e183, 2008 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-18666831

RESUMEN

Protein phosphorylation plays an essential role in the generation of circadian rhythms, regulating the stability, activity, and subcellular localization of certain proteins that constitute the biological clock. This study examines the role of the protein kinase Doubletime (DBT), a Drosophila ortholog of human casein kinase I (CKI)epsilon/delta. An enzymatically active DBT protein is shown to directly phosphorylate the Drosophila clock protein Period (PER). DBT-dependent phosphorylation sites are identified within PER, and their functional significance is assessed in a cultured cell system and in vivo. The per(S) mutation, which is associated with short-period (19-h) circadian rhythms, alters a key phosphorylation target within PER. Inspection of this and neighboring sequence variants indicates that several DBT-directed phosphorylations regulate PER activity in an integrated fashion: Alternative phosphorylations of two adjoining sequence motifs appear to be associated with switch-like changes in PER stability and repressor function.


Asunto(s)
Caseína Cinasa 1 épsilon/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Nucleares/metabolismo , Animales , Northern Blotting , Western Blotting , Caseína Cinasa 1 épsilon/genética , Línea Celular , Ritmo Circadiano , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Expresión Génica , Mutación , Proteínas Nucleares/genética , Proteínas Circadianas Period , Fosforilación , Proteínas Recombinantes/metabolismo , Spodoptera
7.
Zoolog Sci ; 25(6): 561-71, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18624566

RESUMEN

Drosophila FMR1 mutants are models of human fragile X syndrome. They show a loss of locomotor activity rhythm and severe degradation of eclosion timing. We analyzed the circadian behavior of FMR1 mutants (dfmr1B55) in two genetic backgrounds, yellow white (yw) and Canton S (CS). The arrhythmic phenotype of circadian locomotor activity in constant darkness (DD) did not significantly change in either genetic background. Surprisingly, eclosion timing was completely restored by backcrossing dfmr1B55 with yw or CS flies. Morphological analysis of the small ventrally located lateral neurons of FMR1 mutants revealed that the dorsal-projection area was significantly larger in arrhythmic than rhythmic flies. In addition, dfmr1B55 mutants in both genetic backgrounds had a significantly lower evening peak in the light-dark (LD) cycle. These results indicate that lack of FMR1 does not affect eclosion timing, but alters locomotor activity patterns in both LD and DD conditions by affecting the arborization of small ventrally located lateral neurons. Thus, the FMR1 gene may regulate the circadian-related locomotor activity of Drosophila.


Asunto(s)
Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Drosophila/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Locomoción/genética , Mutación/genética , Fenotipo , Animales , Ritmo Circadiano/fisiología , Cruzamientos Genéticos , Cartilla de ADN/genética , Drosophila/fisiología , Inmunohistoquímica , Locomoción/fisiología , Luciferasas , Neuronas/citología , Fotoperiodo , Factores de Tiempo
8.
J Biol Rhythms ; 23(1): 3-15, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18258753

RESUMEN

Double-time (dbt) is a casein kinase gene involved in cell survival, proliferation, and circadian rhythms in the fruit fly, Drosophila melanogaster. Genetic and biochemical studies have shown that dbt and its mammalian ortholog casein kinase I epsilon (hckI epsilon) regulate the circadian phosphorylation of period (per), thus controlling per subcellular localization and stability. Mutations in these kinases can shorten the circadian period in both mammals and Drosophila. Since similar activities in circadian clock have been described for these kinases, we investigated whether the expression of mammalian casein kinase I can replace the activity of dbt in flies. Global expression of the full-length dbt rescued lethality of the null mutant dbt revVIII and rescued flies showed normal locomotor activity rhythms. Global expression of dbt also restored the locomotor activity rhythm of the arrhythmic genotype, dbt ar/dbt revVIII. In contrast, global expression of hckI epsilon or hckI alpha did not rescue lethality or locomotor activity of dbt mutants. Furthermore dbt overexpression in wild-type clock cells had only a small effect on period length, whereas hckI epsilon expression in clock cells greatly lengthened period to ~30.5 hours and increased the number of arrhythmic flies. These results indicate that hckI epsilon cannot replace the activity of dbt in flies despite the high degree of similarity in primary sequence and kinase function. Moreover, expression of hck Iepsilon in flies appears to interfere with dbt activity. Thus, caution should be used in interpreting assays that measure activity of mammalian casein kinase mutants in Drosophila, or that employ vertebrate CKI in studies of dPER phosphorylations.


Asunto(s)
Evolución Biológica , Caseína Cinasa 1 épsilon/genética , Caseína Cinasa 1 épsilon/fisiología , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila/genética , Drosophila/fisiología , Alelos , Animales , Animales Modificados Genéticamente , Conducta Animal , Secuencia Conservada/genética , Secuencia Conservada/fisiología , Expresión Génica/fisiología , Genes Letales , Mutación de Línea Germinal , Humanos , Inmunohistoquímica , Larva , Actividad Motora/genética , Actividad Motora/fisiología , Fenotipo , Fosforilación , Plásmidos/genética
9.
PLoS Genet ; 3(4): e54, 2007 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-17411344

RESUMEN

Circadian clocks are aligned to the environment via synchronizing signals, or Zeitgebers, such as daily light and temperature cycles, food availability, and social behavior. In this study, we found that genome-wide expression profiles from temperature-entrained flies show a dramatic difference in the presence or absence of a thermocycle. Whereas transcript levels appear to be modified broadly by changes in temperature, there is a specific set of temperature-entrained circadian mRNA profiles that continue to oscillate in constant conditions. There are marked differences in the biological functions represented by temperature-driven or circadian regulation. The set of temperature-entrained circadian transcripts overlaps significantly with a previously defined set of transcripts oscillating in response to a photocycle. In follow-up studies, all thermocycle-entrained circadian transcript rhythms also responded to light/dark entrainment, whereas some photocycle-entrained rhythms did not respond to temperature entrainment. Transcripts encoding the clock components Period, Timeless, Clock, Vrille, PAR-domain protein 1, and Cryptochrome were all confirmed to be rhythmic after entrainment to a daily thermocycle, although the presence of a thermocycle resulted in an unexpected phase difference between period and timeless expression rhythms at the transcript but not the protein level. Generally, transcripts that exhibit circadian rhythms both in response to thermocycles and photocycles maintained the same mutual phase relationships after entrainment by temperature or light. Comparison of the collective temperature- and light-entrained circadian phases of these transcripts indicates that natural environmental light and temperature cycles cooperatively entrain the circadian clock. This interpretation is further supported by comparative analysis of the circadian phases observed for temperature-entrained and light-entrained circadian locomotor behavior. Taken together, these findings suggest that information from both light and temperature is integrated by the transcriptional clock mechanism in the adult fly head.


Asunto(s)
Ritmo Circadiano/genética , Ritmo Circadiano/efectos de la radiación , Drosophila melanogaster/genética , Regulación de la Expresión Génica/efectos de la radiación , Luz , Temperatura , Empalme Alternativo/genética , Empalme Alternativo/efectos de la radiación , Animales , Conducta Animal/efectos de la radiación , Relojes Biológicos/efectos de la radiación , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efectos de la radiación , Ambiente , Perfilación de la Expresión Génica , Genes de Insecto/genética , Modelos Biológicos , Actividad Motora/genética , Actividad Motora/efectos de la radiación , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
Nat Chem Biol ; 3(1): 50-4, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17128262

RESUMEN

Control over the timing, location and level of protein activity in vivo is crucial to understanding biological function. Living systems are able to respond to external and internal stimuli rapidly and in a graded fashion by maintaining a pool of proteins whose activities are altered through post-translational modifications. Here we show that the process of protein trans-splicing can be used to modulate enzymatic activity both in cultured cells and in Drosophila melanogaster. We used an optimized conditional protein splicing system to rapidly trigger the in vivo ligation of two inactive fragments of firefly luciferase in a tunable manner. This technique provides a means of controlling enzymatic function with greater speed and precision than with standard genetic techniques and is a useful tool for probing biological processes.


Asunto(s)
Drosophila/enzimología , Luciferasas/metabolismo , Empalme de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Animales , Animales Modificados Genéticamente , Células Cultivadas , Medios de Cultivo Condicionados , Drosophila/genética , Activación Enzimática/genética , Exteínas/genética , Inteínas/genética , Luciferasas/genética , Empalme de Proteína/genética , Proteínas Recombinantes de Fusión/genética , Regulación hacia Arriba
11.
Science ; 311(5758): 226-9, 2006 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-16410523

RESUMEN

In contrast to current models, fluorescence resonance energy transfer measurements using a single-cell imaging assay with fluorescent forms of PER and TIM showed that these proteins bind rapidly and persist in the cytoplasm while gradually accumulating in discrete foci. After approximately 6 hours, complexes abruptly dissociated, as PER and TIM independently moved to the nucleus in a narrow time frame. The per(L) mutation delayed nuclear accumulation in vivo and in our cultured cell system, but without affecting rates of PER/TIM assembly or dissociation. This finding points to a previously unrecognized form of temporal regulation that underlies the periodicity of the circadian clock.


Asunto(s)
Ritmo Circadiano/fisiología , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Transporte Activo de Núcleo Celular , Animales , Línea Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Drosophila melanogaster , Transferencia Resonante de Energía de Fluorescencia , Modelos Biológicos , Proteínas Circadianas Period , Unión Proteica , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo
12.
J Neurosci ; 25(22): 5430-7, 2005 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15930393

RESUMEN

The Period (PER), Timeless (TIM), and Double-Time (DBT) proteins are essential components of one feedback loop in the Drosophila circadian molecular clock. PER and TIM physically interact. Coexpression of PER and TIM promotes their nuclear accumulation and influences the activity of DBT: although DBT phosphorylates and destabilizes PER, this is suppressed by TIM. Experiments using Drosophila cells in culture have indicated that PER can translocate to the nucleus without TIM and will repress transcription in a DBT-potentiated manner. In this study, we examined the control of PER subcellular localization in Drosophila clock cells in vivo. We found that PER can translocate to the nucleus in tim(01) null mutants but only if DBT kinase activity is inhibited. We also found that nuclear PER is a potent transcriptional repressor in dbt mutants in vivo without TIM. Thus, in vivo, DBT regulates PER subcellular localization, in addition to its previously documented role as a mediator of PER stability. However, DBT does not seem essential for transcriptional repression by PER. It was reported previously that overexpression of a second kinase, Shaggy (SGG)/Glycogen Synthase Kinase 3, accelerates PER nuclear accumulation. Here, we show that these effects of SGG on PER nuclear accumulation require TIM. We propose a revised clock model that incorporates this tight kinase regulation of PER and TIM nuclear entry.


Asunto(s)
Caseína Cinasa 1 épsilon/fisiología , Ritmo Circadiano , Proteínas de Drosophila/fisiología , Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción ARNTL , Transporte Activo de Núcleo Celular , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas CLOCK , Caseína Cinasa 1 épsilon/antagonistas & inhibidores , Caseína Cinasa 1 épsilon/metabolismo , Núcleo Celular/metabolismo , Drosophila/genética , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Glucógeno Sintasa Quinasa 3/fisiología , Inmunohistoquímica , Modelos Biológicos , Mutación , Proteínas Circadianas Period , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Transcripción Genética
13.
J Biol Rhythms ; 19(5): 361-73, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15534317

RESUMEN

Circadian rhythms have been observed in diverse organisms, including plants, animals, bacteria, and fungi. In such organisms, the circadian clock is primarily composed of a cell-autonomous transcriptional feedback loop. In addition to transcriptional regulation, the modification of core clock transcripts and proteins can dramatically affect the circadian clock. In this review, the authors discuss some of the posttranscriptional and posttranslational modifications and their effects on the circadian clock. The combined outcome of these modifications is to adjust the timing of the clock to produce a circadian oscillator that takes approximately 24 h.


Asunto(s)
Procesamiento Proteico-Postraduccional , Procesamiento Postranscripcional del ARN , Transactivadores/genética , Transactivadores/fisiología , Animales , Proteínas CLOCK , Núcleo Celular/metabolismo , Ritmo Circadiano , Citoplasma/metabolismo , Humanos , Modelos Biológicos , Oscilometría , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfotransferasas/metabolismo , Factores de Tiempo
14.
Novartis Found Symp ; 253: 267-77; discussion 102-9, 277-84, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14712927

RESUMEN

Two kinases, DOUBLETIME and SHAGGY, have been shown to play a role in the circadian clock. DOUBLETIME, the Drosophila orthologue of casein kinase 1, can phosphorylate PERIOD in the cytoplasm and in the nucleus. This phosphorylation destabilizes PERIOD in both locations and sets patterns of both cytoplasmic accumulation and nuclear turnover. Cytoplasmic phosphorylation postpones accumulation of PERIOD and affects timing of nuclear accumulation of PERIOD/ TIMELESS complexes. SHAGGY, the Drosophila orthologue of glycogen synthase kinase 3, phosphorylates TIMELESS and promotes nuclear translocation of PERIOD/ TIMELESS complexes. Thus, the opposing effects of these two kinases in the cytoplasm are crucial for establishing the approximately 24 h period of circadian rhythmicity in Drosophila. Casein Kinase 1 has been shown to be a component of the circadian clock in mammals. Recent studies are also pointing to a role for glycogen synthase kinase 3 in the mammalian clock.


Asunto(s)
Ritmo Circadiano/fisiología , Glucógeno Sintasa Quinasa 3/fisiología , Proteínas Quinasas/fisiología , Secuencia de Aminoácidos , Animales , Caseína Quinasas , Ritmo Circadiano/genética , Drosophila/genética , Drosophila/fisiología , Genes de Insecto , Glucógeno Sintasa Quinasa 3/genética , Mamíferos , Datos de Secuencia Molecular , Mutación , Fosforilación , Proteínas Quinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA