Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Bio Med Chem Au ; 3(6): 528-541, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38144257

RESUMEN

This study explores the relationship between structural alterations of nirmatrelvir, such as homologation and deuteration, and metabolic stability of newly synthesized derivatives. We developed a reliable synthetic protocol toward dideutero-nirmatrelvir and its homologated analogues with high isotopic incorporation. Deuteration of the primary metabolic site of nirmatrelvir provides a 3-fold improvement of its human microsomal stability but is accompanied by an increased metabolism rate at secondary sites. Homologation of the lactam ring allows the capping group modification to decrease and delocalize the molecule's lipophilicity, reducing the metabolic rate at secondary sites. The effect of deuteration was less pronounced for the 6-membered lactam than for its 5-membered analogue in human microsomes, but the trend is reversed in the case of mouse microsomes. X-ray data revealed that the homologation of the lactam ring favors the orientation of the drug's nitrile warhead for interaction with the catalytic sulfur of the SARS-CoV-2 Mpro, improving its binding. Comparable potency against SARS-CoV-2 Mpro from several variants of concern and selectivity over human cysteine proteases cathepsin B, L, and S was observed for the novel deuterated/homologated derivative and nirmatrelvir. Synthesized compounds displayed a large interspecies variability in hamster, rat, and human hepatocyte stability assays. Overall, we aimed to apply a rational approach in changing the physicochemical properties of the drug to refine its biochemical and biological parameters.

2.
Front Immunol ; 14: 930086, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37197656

RESUMEN

Interferon regulatory factors (IRFs) are key elements of antiviral innate responses that regulate the transcription of interferons (IFNs) and IFN-stimulated genes (ISGs). While the sensitivity of human coronaviruses to IFNs has been characterized, antiviral roles of IRFs during human coronavirus infection are not fully understood. Type I or II IFN treatment protected MRC5 cells from human coronavirus 229E infection, but not OC43. Cells infected with 229E or OC43 upregulated ISGs, indicating that antiviral transcription is not suppressed. Antiviral IRFs, IRF1, IRF3 and IRF7, were activated in cells infected with 229E, OC43 or severe acute respiratory syndrome-associated coronavirus 2 (SARS-CoV-2). RNAi knockdown and overexpression of IRFs demonstrated that IRF1 and IRF3 have antiviral properties against OC43, while IRF3 and IRF7 are effective in restricting 229E infection. IRF3 activation effectively promotes transcription of antiviral genes during OC43 or 229E infection. Our study suggests that IRFs may be effective antiviral regulators against human coronavirus infection.


Asunto(s)
COVID-19 , Coronavirus Humano 229E , Humanos , Factor 3 Regulador del Interferón , SARS-CoV-2/metabolismo , Interferones/metabolismo , Antivirales/farmacología , Factores Reguladores del Interferón
3.
NPJ Vaccines ; 7(1): 49, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35474311

RESUMEN

The SARS-CoV-2 pandemic is an ongoing threat to global health, and wide-scale vaccination is an efficient method to reduce morbidity and mortality. We designed and evaluated two DNA plasmid vaccines, based on the pIDV-II system, expressing the SARS-CoV-2 spike gene, with or without an immunogenic peptide, in mice, and in a Syrian hamster model of infection. Both vaccines demonstrated robust immunogenicity in BALB/c and C57BL/6 mice. Additionally, the shedding of infectious virus and the viral burden in the lungs was reduced in immunized hamsters. Moreover, high-titers of neutralizing antibodies with activity against multiple SARS-CoV-2 variants were generated in immunized animals. Vaccination also protected animals from weight loss during infection. Additionally, both vaccines were effective at reducing both pulmonary and extrapulmonary pathology in vaccinated animals. These data show the potential of a DNA vaccine for SARS-CoV-2 and suggest further investigation in large animal and human studies could be pursued.

4.
J Med Chem ; 65(4): 2905-2925, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-34242027

RESUMEN

Recurring coronavirus outbreaks, such as the current COVID-19 pandemic, establish a necessity to develop direct-acting antivirals that can be readily administered and are active against a broad spectrum of coronaviruses. Described in this Article are novel α-acyloxymethylketone warhead peptidomimetic compounds with a six-membered lactam glutamine mimic in P1. Compounds with potent SARS-CoV-2 3CL protease and in vitro viral replication inhibition were identified with low cytotoxicity and good plasma and glutathione stability. Compounds 15e, 15h, and 15l displayed selectivity for SARS-CoV-2 3CL protease over CatB and CatS and superior in vitro SARS-CoV-2 antiviral replication inhibition compared with the reported peptidomimetic inhibitors with other warheads. The cocrystallization of 15l with SARS-CoV-2 3CL protease confirmed the formation of a covalent adduct. α-Acyloxymethylketone compounds also exhibited antiviral activity against an alphacoronavirus and non-SARS betacoronavirus strains with similar potency and a better selectivity index than remdesivir. These findings demonstrate the potential of the substituted heteroaromatic and aliphatic α-acyloxymethylketone warheads as coronavirus inhibitors, and the described results provide a basis for further optimization.


Asunto(s)
Antivirales/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , Peptidomiméticos/farmacología , SARS-CoV-2/efectos de los fármacos , Antivirales/síntesis química , Antivirales/química , COVID-19/metabolismo , Proteasas 3C de Coronavirus/metabolismo , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/química , Glutamina/química , Glutamina/farmacología , Humanos , Cetonas/química , Cetonas/farmacología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Peptidomiméticos/química , SARS-CoV-2/enzimología , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
5.
RSC Med Chem ; 12(10): 1722-1730, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34778773

RESUMEN

Tragically, the death toll from the COVID-19 pandemic continues to rise, and with variants being observed around the globe new therapeutics, particularly direct-acting antivirals that are easily administered, are desperately needed. Studies targeting the SARS-CoV-2 3CL protease, which is critical for viral replication, with different peptidomimetics and warheads is an active area of research for development of potential drugs. To date, however, only a few publications have evaluated the nitrile warhead as a viral 3CL protease inhibitor, with only modest activity reported. This article describes our investigation of P3 4-methoxyindole peptidomimetic analogs with select P1 and P2 groups with a nitrile warhead that are potent inhibitors of SARS-CoV-2 3CL protease and demonstrate in vitro SARS-CoV-2 antiviral activity. A selectivity for SARS-CoV-2 3CL protease over human cathepsins B, S and L was also observed with the nitrile warhead, which was superior to that with the aldehyde warhead. A co-crystal structure with SARS-CoV-2 3CL protease and a reversibility study indicate that a reversible, thioimidate adduct is formed when the catalytic sulfur forms a covalent bond with the carbon of the nitrile. This effort also identified efflux as a property limiting antiviral activity of these compounds, and together with the positive attributes described these results provide insight for further drug development of novel nitrile peptidomimetics targeting SARS-CoV-2 3CL protease.

6.
Anal Chem ; 93(37): 12808-12816, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34506127

RESUMEN

CRISPR-Cas systems integrated with nucleic acid amplification techniques improve both analytical specificity and sensitivity. We describe here issues and solutions for the successful integration of reverse transcription (RT), recombinase polymerase amplification (RPA), and CRISPR-Cas12a nuclease reactions into a single tube under an isothermal condition (40 °C). Specific detection of a few copies of a viral DNA sequence was achieved in less than 20 min. However, the sensitivity was orders of magnitude lower for the detection of viral RNA due to the slow initiation of RPA when the complementary DNA (cDNA) template remained hybridized to RNA. During the delay of RPA, the crRNA-Cas12a ribonucleoprotein (RNP) gradually lost its activity in the RPA solution, and nonspecific amplification reactions consumed the RPA reagents. We overcame these problems by taking advantage of the endoribonuclease function of RNase H to remove RNA from the RNA-cDNA hybrids and free the cDNA as template for the RPA reaction. As a consequence, we significantly enhanced the overall reaction rate of an integrated assay using RT-RPA and CRISPR-Cas12a for the detection of RNA. We showed successful detection of 200 or more copies of the S gene sequence of SARS-CoV-2 RNA within 5-30 min. We applied our one-tube assay to 46 upper respiratory swab samples for COVID-19 diagnosis, and the results from both fluorescence intensity measurements and end-point visualization were consistent with those of RT-qPCR analysis. The strategy and technique improve the sensitivity and speed of RT-RPA and CRISPR-Cas12a assays, potentially useful for both semi-quantitative and point-of-care analyses of RNA molecules.


Asunto(s)
COVID-19 , Transcripción Reversa , Prueba de COVID-19 , Humanos , Técnicas de Amplificación de Ácido Nucleico , ARN Viral/genética , Recombinasas/genética , SARS-CoV-2 , Sensibilidad y Especificidad , Tecnología
7.
Vaccine ; 39(40): 5769-5779, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34481699

RESUMEN

SARS-CoV-2 is the etiological agent of COVID19. There are currently several licensed vaccines approved for human use and most of them target the spike protein in the virion envelope to induce protective immunity. Recently, variants that spread more quickly have emerged. There is evidence that some of these variants are less sensitive to neutralization in vitro, but it is not clear whether they can evade vaccine induced protection. In this study, we tested SARS-CoV-2 spike RBD as a vaccine antigen and explored the effect of formulation with Alum/MPLA or AddaS03 adjuvants. Our results show that RBD induces high titers of neutralizing antibodies and activates strong cellular immune responses. There is also significant cross-neutralization of variants B.1.1.7 and B.1.351 and to a lesser extent, SARS-CoV-1. These results indicate that recombinant RBD can be a viable candidate as a stand-alone vaccine or as a booster shot to diversify our strategy for COVID19 protection.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Anticuerpos Antivirales , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética
8.
Eur J Med Chem ; 222: 113584, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34118724

RESUMEN

Replication of SARS-CoV-2, the coronavirus causing COVID-19, requires a main protease (Mpro) to cleave viral proteins. Consequently, Mpro is a target for antiviral agents. We and others previously demonstrated that GC376, a bisulfite prodrug with efficacy as an anti-coronaviral agent in animals, is an effective inhibitor of Mpro in SARS-CoV-2. Here, we report structure-activity studies of improved GC376 derivatives with nanomolar affinities and therapeutic indices >200. Crystallographic structures of inhibitor-Mpro complexes reveal that an alternative binding pocket in Mpro, S4, accommodates the P3 position. Alternative binding is induced by polar P3 groups or a nearby methyl. NMR and solubility studies with GC376 show that it exists as a mixture of stereoisomers and forms colloids in aqueous media at higher concentrations, a property not previously reported. Replacement of its Na+ counter ion with choline greatly increases solubility. The physical, biochemical, crystallographic, and cellular data reveal new avenues for Mpro inhibitor design.


Asunto(s)
Antivirales/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , Pirrolidinas/farmacología , SARS-CoV-2/efectos de los fármacos , Ácidos Sulfónicos/farmacología , Animales , Antivirales/síntesis química , Antivirales/metabolismo , Sitios de Unión , Chlorocebus aethiops , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Cristalografía por Rayos X , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/metabolismo , Humanos , Micelas , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Unión Proteica , Pirrolidinas/síntesis química , Pirrolidinas/metabolismo , SARS-CoV-2/enzimología , Solubilidad , Relación Estructura-Actividad , Ácidos Sulfónicos/síntesis química , Ácidos Sulfónicos/metabolismo , Células Vero
9.
Clin Transl Immunology ; 10(3): e1260, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732459

RESUMEN

OBJECTIVES: A major COVID-19 vaccine strategy is to induce antibodies that prevent interaction between the Spike protein's receptor-binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2). These vaccines will also induce T-cell responses. However, concerns were raised that aberrant vaccine-induced immune responses may exacerbate disease. We aimed to identify minimal epitopes on the RBD that would induce antibody responses that block the interaction of the RBD and ACE2 as a strategy leading to an effective vaccine with reduced risk of inducing immunopathology. METHODS: We procured a series of overlapping 20-amino acid peptides spanning the RBD and asked which were recognised by plasma from COVID-19 convalescent patients. Identified epitopes were conjugated to diphtheria-toxoid and used to vaccinate mice. Immune sera were tested for binding to the RBD and for their ability to block the interaction of the RBD and ACE2. RESULTS: Seven putative vaccine epitopes were identified. Memory B-cells (MBCs) specific for one of the epitopes were identified in the blood of convalescent patients. When used to vaccinate mice, six induced antibodies that bound recRBD and three induced antibodies that could partially block the interaction of the RBD and ACE2. However, when the sera were combined in pairs, we observed significantly enhanced inhibition of binding of RBD to ACE2. Two of the peptides were located in the main regions of the RBD known to contact ACE2. Of significant importance to vaccine development, two of the peptides were in regions that are invariant in the UK and South African strains. CONCLUSION: COVID-19 convalescent patients have SARS-CoV-2-specific antibodies and MBCs, the specificities of which can be defined with short peptides. Epitope-specific antibodies synergistically block RBD-ACE2 interaction.

10.
Anal Chem ; 92(24): 16204-16212, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33238709

RESUMEN

We have developed a single-tube assay for SARS-CoV-2 in patient samples. This assay combined advantages of reverse transcription (RT) loop-mediated isothermal amplification (LAMP) with clustered regularly interspaced short palindromic repeats (CRISPRs) and the CRISPR-associated (Cas) enzyme Cas12a. Our assay is able to detect SARS-CoV-2 in a single tube within 40 min, requiring only a single temperature control (62 °C). The RT-LAMP reagents were added to the sample vial, while CRISPR Cas12a reagents were deposited onto the lid of the vial. After a half-hour RT-LAMP amplification, the tube was inverted and flicked to mix the detection reagents with the amplicon. The sequence-specific recognition of the amplicon by the CRISPR guide RNA and Cas12a enzyme improved specificity. Visible green fluorescence generated by the CRISPR Cas12a system was recorded using a smartphone camera. Analysis of 100 human respiratory swab samples for the N and/or E gene of SARS-CoV-2 produced 100% clinical specificity and no false positive. Analysis of 50 samples that were detected positive using reverse transcription quantitative polymerase chain reaction (RT-qPCR) resulted in an overall clinical sensitivity of 94%. Importantly, this included 20 samples that required 30-39 threshold cycles of RT-qPCR to achieve a positive detection. Integration of the exponential amplification ability of RT-LAMP and the sequence-specific processing by the CRISPR-Cas system into a molecular assay resulted in improvements in both analytical sensitivity and specificity. The single-tube assay is beneficial for future point-of-care applications.


Asunto(s)
Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Técnicas de Amplificación de Ácido Nucleico , SARS-CoV-2/genética , Humanos , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
Nat Commun ; 11(1): 4282, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32855413

RESUMEN

The main protease, Mpro (or 3CLpro) in SARS-CoV-2 is a viable drug target because of its essential role in the cleavage of the virus polypeptide. Feline infectious peritonitis, a fatal coronavirus infection in cats, was successfully treated previously with a prodrug GC376, a dipeptide-based protease inhibitor. Here, we show the prodrug and its parent GC373, are effective inhibitors of the Mpro from both SARS-CoV and SARS-CoV-2 with IC50 values in the nanomolar range. Crystal structures of SARS-CoV-2 Mpro with these inhibitors have a covalent modification of the nucleophilic Cys145. NMR analysis reveals that inhibition proceeds via reversible formation of a hemithioacetal. GC373 and GC376 are potent inhibitors of SARS-CoV-2 replication in cell culture. They are strong drug candidates for the treatment of human coronavirus infections because they have already been successful in animals. The work here lays the framework for their use in human trials for the treatment of COVID-19.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Coronavirus Felino/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Células A549 , Animales , Antivirales/química , Betacoronavirus/enzimología , Sitios de Unión , Chlorocebus aethiops , Proteasas 3C de Coronavirus , Coronavirus Felino/enzimología , Cristalografía por Rayos X , Cisteína Endopeptidasas/química , Efecto Citopatogénico Viral/efectos de los fármacos , Reposicionamiento de Medicamentos , Humanos , Concentración 50 Inhibidora , Estructura Molecular , Profármacos , Inhibidores de Proteasas/química , Pirrolidinas/química , Pirrolidinas/farmacología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , SARS-CoV-2 , Ácidos Sulfónicos , Células Vero , Proteínas no Estructurales Virales/química , Replicación Viral/efectos de los fármacos
13.
PLoS Pathog ; 15(10): e1008111, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31626661

RESUMEN

The herpes simplex virus virion host shutoff (vhs) RNase destabilizes cellular and viral mRNAs and blunts host innate antiviral responses. Previous work demonstrated that cells infected with vhs mutants display enhanced activation of the host double-stranded RNA (dsRNA)-activated protein kinase R (PKR), implying that vhs limits dsRNA accumulation in infected cells. Confirming this hypothesis, we show that partially complementary transcripts of the UL23/UL24 and UL30/31 regions of the viral genome increase in abundance when vhs is inactivated, giving rise to greatly increased levels of intracellular dsRNA formed by annealing of the overlapping portions of these RNAs. Thus, vhs limits accumulation of dsRNA at least in part by reducing the levels of complementary viral transcripts. We then asked if vhs also destabilizes dsRNA after its initial formation. Here, we used a reporter system employing two mCherry expression plasmids bearing complementary 3' UTRs to produce defined dsRNA species in uninfected cells. The dsRNAs are unstable, but are markedly stabilized by co-expressing the HSV dsRNA-binding protein US11. Strikingly, vhs delivered by super-infecting HSV virions accelerates the decay of these pre-formed dsRNAs in both the presence and absence of US11, a novel and unanticipated activity of vhs. Vhs binds the host RNA helicase eIF4A, and we find that vhs-induced dsRNA decay is attenuated by the eIF4A inhibitor hippuristanol, providing evidence that eIF4A participates in the process. Our results show that a herpesvirus host shutoff RNase destabilizes dsRNA in addition to targeting partially complementary viral mRNAs, raising the possibility that the mRNA destabilizing proteins of other viral pathogens dampen the host response to dsRNA through similar mechanisms.


Asunto(s)
Estabilidad del ARN/genética , ARN Bicatenario/metabolismo , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Ribonucleasas/metabolismo , Simplexvirus/genética , Proteínas Virales/metabolismo , Animales , Línea Celular , Chlorocebus aethiops , ADN Polimerasa Dirigida por ADN/metabolismo , Factor 4F Eucariótico de Iniciación/antagonistas & inhibidores , Factor 4F Eucariótico de Iniciación/metabolismo , Exodesoxirribonucleasas/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Células Vero
14.
J Virol ; 92(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29997208

RESUMEN

Poxviruses encode many proteins with the ability to regulate cellular signaling pathways. One such protein is the vaccinia virus innate immunity modulator E3. Multiple functions have been ascribed to E3, including modulating the cellular response to double-stranded RNA, inhibiting the NF-κB and IRF3 pathways, and dampening apoptosis. Apoptosis serves as a powerful defense against damaged and unwanted cells and is an effective defense against viral infection; many viruses therefore encode proteins that prevent or delay apoptosis. Here, we present data indicating that E3 does not directly inhibit the intrinsic apoptotic pathway; instead, it suppresses apoptosis indirectly by stimulating expression of the viral F1 apoptotic inhibitor. Our data demonstrate that E3 promotes F1 expression by blocking activation of the double-stranded RNA-activated protein kinase R (PKR). F1 mRNA is present in cells infected with E3-null virus, but the protein product does not detectably accumulate, suggesting a block at the translational level. We also show that two 3' coterminal transcripts span the F1 open reading frame (ORF), a situation previously described for the vaccinia virus mRNAs encoding the J3 and J4 proteins. One of these is a conventional monocistronic transcript of the F1L gene, while the other arises by read-through transcription from the upstream F2L gene and does not give rise to appreciable levels of F1 protein.IMPORTANCE Previous studies have shown that E3-deficient vaccinia virus triggers apoptosis of infected cells. Our study demonstrates that this proapoptotic phenotype stems, at least in part, from the failure of the mutant virus to produce adequate quantities of the viral F1 protein, which acts at the mitochondria to directly block apoptosis. Our data establish a regulatory link between the vaccinia virus proteins that suppress the innate response to double-stranded RNA and those that block the intrinsic apoptotic pathway.


Asunto(s)
Interacciones Huésped-Patógeno , Proteínas de Unión al ARN/genética , Virus Vaccinia/genética , Proteínas Virales/genética , eIF-2 Quinasa/genética , Animales , Apoptosis/genética , Eliminación de Gen , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Sistemas de Lectura Abierta , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Células RAW 264.7 , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Virus Vaccinia/metabolismo , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/metabolismo , eIF-2 Quinasa/metabolismo
15.
Virology ; 498: 31-35, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27543756

RESUMEN

The abundant HSV-1 tegument protein VP11/12 encoded by gene UL46 is essential for induction of the PI3K/Akt-signaling pathway during infection. VP11/12 utilizes tyrosine-based motifs within its C-terminal region to bind the SH2 domains of Src family kinases, the p85 subunit of PI3 Kinase and Grb2, and the PTB domain of Shc. We previously proposed that the interaction with SFKs and p85 is used to gain control over the PI3K/Akt signaling pathway. We tested this model by evaluating the effects of mutations that eliminate each of these interactions on the ability of HSV-1 to activate Akt. Inhibiting the interaction of VP11/12 with SFKs, p85 and Grb2 reduced Akt activation, while inhibiting the interaction with Shc had little effect. Overall these data support the suggestion that VP11/12 stimulates the PI3K/Akt pathway by mimicking an activated growth factor receptor.


Asunto(s)
Antígenos Virales/metabolismo , Herpes Simple/metabolismo , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Proteínas Virales/metabolismo , Familia-src Quinasas/metabolismo , Animales , Antígenos Virales/química , Línea Celular , Activación Enzimática , Proteína Adaptadora GRB2/metabolismo , Humanos , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Virales/química
16.
J Virol ; 90(13): 6049-6057, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27099317

RESUMEN

UNLABELLED: The herpes simplex virus (HSV) virion host shutoff (vhs) RNase destabilizes cellular and viral mRNAs, suppresses host protein synthesis, dampens antiviral responses, and stimulates translation of viral mRNAs. vhs mutants display a host range phenotype: translation of viral true late mRNAs is severely impaired and stress granules accumulate in HeLa cells, while translation proceeds normally in Vero cells. We found that vhs-deficient virus activates the double-stranded RNA-activated protein kinase R (PKR) much more strongly than the wild-type virus does in HeLa cells, while PKR is not activated in Vero cells, raising the possibility that PKR might play roles in stress granule induction and/or inhibiting translation in restrictive cells. We tested this possibility by evaluating the effects of inactivating PKR. Eliminating PKR in HeLa cells abolished stress granule formation but had only minor effects on viral true late protein levels. These results document an essential role for PKR in stress granule formation by a nuclear DNA virus, indicate that induction of stress granules is the consequence rather than the cause of the translational defect, and are consistent with our previous suggestion that vhs promotes translation of viral true late mRNAs by preventing mRNA overload rather than by suppressing eIF2α phosphorylation. IMPORTANCE: The herpes simplex virus vhs RNase plays multiple roles during infection, including suppressing PKR activation, inhibiting the formation of stress granules, and promoting translation of viral late mRNAs. A key question is the extent to which these activities are mechanistically connected. Our results demonstrate that PKR is essential for stress granule formation in the absence of vhs, but at best, it plays a secondary role in suppressing translation of viral mRNAs. Thus, the ability of vhs to promote translation of viral mRNAs can be largely uncoupled from PKR suppression, demonstrating that this viral RNase modulates at least two distinct aspects of RNA metabolism.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Herpesvirus Humano 1/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Viral/genética , Proteínas Virales/metabolismo , Virión/metabolismo , eIF-2 Quinasa/metabolismo , Animales , Chlorocebus aethiops , Activación Enzimática , Factor 2 Eucariótico de Iniciación/metabolismo , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno , Humanos , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Células Vero , Proteínas Virales/genética , Replicación Viral , eIF-2 Quinasa/genética
17.
J Virol ; 88(17): 9624-32, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24920814

RESUMEN

UNLABELLED: We recently demonstrated that the virion host shutoff (vhs) protein, an mRNA-specific endonuclease, is required for efficient herpes simplex virus 1 (HSV-1) replication and translation of viral true-late mRNAs, but not other viral and cellular mRNAs, in many cell types (B. Dauber, J. Pelletier, and J. R. Smiley, J. Virol. 85:5363-5373, 2011, http://dx.doi.org/10.1128/JVI.00115-11). Here, we evaluated whether the structure of true-late mRNAs or the timing of their transcription is responsible for the poor translation efficiency in the absence of vhs. To test whether the highly structured 5' untranslated region (5'UTR) of the true-late gC mRNA is the primary obstacle for translation initiation, we replaced it with the less structured 5'UTR of the γ-actin mRNA. However, this mutation did not restore translation in the context of a vhs-deficient virus. We then examined whether the timing of transcription affects translation efficiency at late times. To this end, we engineered a vhs-deficient virus mutant that transcribes the true-late gene US11 with immediate-early kinetics (IEUS11-ΔSma). Interestingly, IEUS11-ΔSma showed increased translational activity on the US11 transcript at late times postinfection, and US11 protein levels were restored to wild-type levels. These results suggest that mRNAs can maintain translational activity throughout the late stage of infection if they are present before translation factors and/or ribosomes become limiting. Taken together, these results provide evidence that in the absence of the mRNA-destabilizing function of vhs, accumulation of viral mRNAs overwhelms the capacity of the host translational machinery, leading to functional exclusion of the last mRNAs that are made during infection. IMPORTANCE: The process of mRNA translation accounts for a significant portion of a cell's energy consumption. To ensure efficient use of cellular resources, transcription, translation, and mRNA decay are tightly linked and highly regulated. However, during virus infection, the overall amount of mRNA may increase drastically, possibly overloading the capacity of the translation apparatus. Our results suggest that the HSV-1 vhs protein, an mRNA-specific endoribonuclease, prevents mRNA overload during infection, thereby allowing translation of late viral mRNAs. The requirement for vhs varies between cell types. Further studies of the basis for this difference likely will offer insights into how cells regulate overall mRNA levels and access to the translational apparatus.


Asunto(s)
Herpesvirus Humano 1/fisiología , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Ribonucleasas/metabolismo , Proteínas Virales/biosíntesis , Animales , Chlorocebus aethiops , Células HeLa , Herpesvirus Humano 1/genética , Humanos , Células Vero , Proteínas Virales/metabolismo
18.
J Virol ; 88(13): 7379-88, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24741093

RESUMEN

UNLABELLED: The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway plays key roles in diverse cellular activities and promotes cell growth and survival. It is therefore unsurprising that most viruses modify this pathway in order to facilitate their replication and spread. Previous work has suggested that the herpes simplex virus 1 (HSV-1) tegument proteins VP11/12 and US3 protein kinase modulate the PI3K/Akt pathway, albeit in opposing ways: VP11/12 binds and activates Src family kinases (SFKs), is tyrosine phosphorylated, recruits PI3K in an SFK-dependent fashion, and is required for HSV-induced phosphorylation of Akt on its activating residues; in contrast, US3 inhibits Akt activation and directly phosphorylates downstream Akt targets. We examined if US3 negatively regulates Akt by dampening the signaling activity of VP11/12. Consistent with this hypothesis, the enhanced Akt activation that occurs during US3-null infection requires VP11/12 and correlates with an increase in SFK-dependent VP11/12 tyrosine phosphorylation. In addition, deleting US3 leads to a striking increase in the relative abundances of several VP11/12 species that migrate with reduced mobility during SDS-PAGE. These forms arise through phosphorylation, strictly require the viral UL13 protein kinase, and are excluded from virions. Taken in combination, these data indicate that US3 dampens SFK-dependent tyrosine and UL13-dependent serine/threonine phosphorylation of VP11/12, thereby inhibiting VP11/12 signaling and promoting virion packaging of VP11/12. These results illustrate that protein phosphorylation events mediated by viral protein kinases serve to coordinate the roles of VP11/12 as a virion component and intracellular signaling molecule. IMPORTANCE: Herpesvirus tegument proteins play dual roles during the viral life cycle, serving both as structural components of the virus particle and as modulators of cellular and viral functions in infected cells. How these two roles are coordinated during infection and virion assembly is a fundamental and largely unanswered question. Here we addressed this issue with herpes simplex virus VP11/12, a tegument protein that activates the cellular PI3K/Akt signaling pathway. We showed that protein phosphorylation mediated by the viral US3 and UL13 kinases serves to orchestrate its functions: UL13 appears to inhibit VP11/12 virion packaging, while US3 antagonizes UL13 action and independently dampens VP11/12 signaling activity.


Asunto(s)
Antígenos Virales/metabolismo , Herpes Simple/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Virales/metabolismo , Virión/fisiología , Animales , Western Blotting , Chlorocebus aethiops , Ensayo de Cambio de Movilidad Electroforética , Herpes Simple/virología , Humanos , Fosforilación , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Simplexvirus/fisiología , Células Vero , Proteínas Virales/genética
19.
J Virol ; 88(5): 2967-76, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24371054

RESUMEN

UNLABELLED: Infection with herpes simplex virus type 1 (HSV-1) results in the rapid elimination of mitochondrial DNA (mtDNA) from host cells. It is known that a mitochondrial isoform of the viral alkaline nuclease (UL12) called UL12.5 triggers this process. However, very little is known about the impact of mtDNA depletion on viral replication or the biology of HSV-1 infections. These questions have been difficult to address because UL12.5 and UL12 are encoded by overlapping transcripts that share the same open reading frame. As a result, mutations that alter UL12.5 also affect UL12, and UL12 null mutations severely impair viral growth by interfering with the intranuclear processing of progeny viral genomes. Therefore, to specifically assess the impact of mtDNA depletion on viral replication, it is necessary to eliminate the activity of UL12.5 while preserving the nuclear functions of UL12. Previous work has shown that the human cytomegalovirus alkaline nuclease UL98 can functionally substitute for UL12 during HSV-1 replication. We found that UL98 is unable to deplete mtDNA in transfected cells and therefore generated an HSV-1 variant in which UL98 coding sequences replace the UL12/UL12.5 open reading frame. The resulting virus was severely impaired in its ability to trigger mtDNA loss but reached titers comparable to those of wild-type HSV-1 in one-step and multistep growth experiments. Together, these observations demonstrate that the elimination of mtDNA is not required for HSV-1 replication in cell culture. IMPORTANCE: Herpes simplex virus types 1 and 2 destroy the DNA of host cell mitochondria, the powerhouses of cells. Epstein-Barr virus, a distantly related herpesvirus, has a similar effect, indicating that mitochondrial DNA destruction is under positive selection and thus confers a benefit to the virus. The present work shows that mitochondrial DNA destruction is not required for efficient replication of herpes simplex virus type 1 in cultured Vero kidney epithelial cells, suggesting that this activity likely benefits the virus in other cell types or in the intact human host.


Asunto(s)
Replicación del ADN , ADN Mitocondrial/metabolismo , Herpesvirus Humano 1/fisiología , Animales , Línea Celular , Chlorocebus aethiops , Desoxirribonucleasas/genética , Desoxirribonucleasas/metabolismo , Expresión Génica , Humanos , Mutación , Biosíntesis de Proteínas , Transporte de Proteínas , Transfección , Células Vero , Proteínas Virales/genética , Proteínas Virales/metabolismo
20.
J Virol ; 87(20): 11276-86, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23946459

RESUMEN

Previous studies have shown that the abundant herpes simplex virus 1 (HSV-1) tegument protein VP11/12, encoded by gene UL46, stimulates phosphatidylinositol 3-kinase (PI3-kinase)/Akt signaling: it binds the Src family kinase (SFK) Lck, is tyrosine phosphorylated, recruits the p85 subunit of PI3-kinase, and is essential for the activation of Akt during HSV-1 infection. The C-terminal region of VP11/12 contains tyrosine-based motifs predicted to bind the SH2 domains of SFKs (YETV and YEEI), p85 (YTHM), and Grb2 (YENV) and the phosphotyrosine-binding (PTB) domain of Shc (NPLY). We inactivated each of these motifs in the context of the intact viral genome and examined effects on binding and activation of Lck and recruitment of p85, Grb2, and Shc. Inactivating the p85, Grb2, or Shc motif reduced (p85) or eliminated (Grb2 and Shc) the interaction with the cognate signaling molecule without greatly affecting the other interactions or activation of Lck. Inactivating either SFK motif had only a minor effect on Lck binding and little or no effect on recruitment of p85, Grb2, or Shc. In contrast, inactivation of both SFK motifs severely reduced Lck binding and activation and tyrosine phosphorylation of VP11/12 and reduced (p85) or eliminated (Grb2 and Shc) binding of other signaling proteins. Overall, these data demonstrate the key redundant roles of the VP11/12 SFK-binding motifs in the recruitment and activation of SFKs and indicate that activated SFKs then lead (directly or indirectly) to phosphorylation of the additional motifs involved in recruiting p85, Grb2, and Shc. Thus, VP11/12 appears to mimic an activated growth factor receptor.


Asunto(s)
Antígenos Virales/metabolismo , Proteína Adaptadora GRB2/metabolismo , Herpesvirus Humano 1/fisiología , Interacciones Huésped-Patógeno , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Proteínas Virales/metabolismo , Animales , Antígenos Virales/genética , Análisis Mutacional de ADN , Herpesvirus Humano 1/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...