Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metabolism ; 118: 154727, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33581132

RESUMEN

BACKGROUND: Metabolic syndrome (MetS) is characterized by a cluster of interconnected risk factors -hyperglycemia, dyslipidemia, hypertension and obesity- leading to an increased risk of cardiovascular events. Small extracellular vesicles (sEVs) can be considered as new biomarkers of different pathologies, and they are involved in intercellular communication. Here, we hypothesize that sEVs are implicated in MetS-associated endothelial dysfunction. METHODS: Circulating sEVs of non-MetS (nMetS) subjects and MetS patients were isolated from plasma and characterized. Thereafter, sEV effects on endothelial function were analyzed by measuring nitric oxide (NO) and reactive oxygen species (ROS) production, and mitochondrial dynamic proteins on human endothelial aortic cells (HAoECs). RESULTS: Circulating levels of sEVs positively correlated with anthropometric and biochemical parameters including visceral obesity, glycaemia, insulinemia, and dyslipidemia. Treatment of HAoECs with sEVs from MetS patients decreased NO production through the inhibition of the endothelial NO-synthase activity. Injection of MetS-sEVs into mice impaired endothelium-dependent relaxation induced by acetylcholine. Furthermore, MetS-sEVs increased DHE and MitoSox-associated fluorescence in HAoECs, reflecting enhanced cytosolic and mitochondrial ROS production which was not associated with mitochondrial biogenesis or dynamic changes. MetS patients displayed elevated circulating levels of LPS in plasma, and, at least in part, it was associated to circulating sEVs. Pharmacological inhibition and down-regulation of TLR4, as well as sEV-carried LPS neutralization, results in a substantial decrease of ROS production induced by MetS-sEVs. CONCLUSION: These results evidence sEVs from MetS patients as potential new biomarkers for this syndrome, and TLR4 pathway activation by sEVs provides a link between the endothelial dysfunction and metabolic disturbances described in MetS.


Asunto(s)
Endotelio Vascular/patología , Vesículas Extracelulares/metabolismo , Lipopolisacáridos/metabolismo , Síndrome Metabólico/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Células Cultivadas , Estudios de Cohortes , Citosol/metabolismo , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Mitocondrias/metabolismo , Óxido Nítrico/metabolismo , Biogénesis de Organelos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
2.
Antioxid Redox Signal ; 26(1): 15-27, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27392575

RESUMEN

AIMS: Circulating microparticles (MPs) from metabolic syndrome patients and those generated from apoptotic T cells induce endothelial dysfunction; however, the molecular and cellular mechanism(s) underlying in the effects of MPs remain to be elucidated. RESULTS: Here, we show that both types of MPs increased expression of endoplasmic reticulum (ER) stress markers, X-box binding protein 1, p-eukaryotic translation initiation factor 2 α, and CHOP, and nuclear translocation of activating transcription factor 6 on human aortic endothelial cells (HAoECs). MPs decreased in vitro nitric oxide release by HAoECs, whereas in vivo MP injection into mice impaired the endothelium-dependent relaxation induced by acetylcholine. These effects were prevented when ER stress was inhibited, suggesting that ER stress is implicated in the endothelial effects induced by MPs. MPs affected mitochondrial function and evoked sequential increase of cytosolic and mitochondrial reactive oxygen species (ROS). Pharmacological inhibition of ER stress and silencing of neutral sphingomyelinase (SMase) with siRNA abrogated all MP-mediated effects. Neutralization of Fas ligand carried by MPs abolished effects induced by both MP types, whereas neutralization of low-density lipoprotein receptor on endothelial cells prevented T-lymphocyte MP-mediated effects. Innovation and Conclusion: Collectively, endothelial dysfunction triggered by MPs involves temporal cross talk between ER and mitochondria with respect to spatial regulation of ROS via the neutral SMase and interaction of MPs with Fas and/or low-density lipoprotein receptor. These results provide a novel molecular insight into the manner MPs mediate vascular dysfunction and allow identification of potential therapeutic targets to treat vascular complications associated with metabolic syndrome. Antioxid. Redox Signal. 26, 15-27.


Asunto(s)
Micropartículas Derivadas de Células/metabolismo , Retículo Endoplásmico/metabolismo , Células Endoteliales/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Transducción de Señal , Citosol/metabolismo , Estrés del Retículo Endoplásmico , Activación Enzimática , Proteína Ligando Fas/metabolismo , Humanos , Activación de Linfocitos , Síndrome Metabólico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Superficie Celular/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Receptor fas/metabolismo
3.
Brain ; 139(11): 2864-2876, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27633772

RESUMEN

Leber's hereditary optic neuropathy (MIM#535000), the commonest mitochondrial DNA-related disease, is caused by mutations affecting mitochondrial complex I. The clinical expression of the disorder, usually occurring in young adults, is typically characterized by subacute, usually sequential, bilateral visual loss, resulting from the degeneration of retinal ganglion cells. As the precise action of mitochondrial DNA mutations on the overall cell metabolism in Leber's hereditary optic neuropathy is unknown, we investigated the metabolomic profile of the disease. High performance liquid chromatography coupled with tandem mass spectrometry was used to quantify 188 metabolites in fibroblasts from 16 patients with Leber's hereditary optic neuropathy and eight healthy control subjects. Latent variable-based statistical methods were used to identify discriminating metabolites. One hundred and twenty-four of the metabolites were considered to be accurately quantified. A supervised orthogonal partial least squares discriminant analysis model separating patients with Leber's hereditary optic neuropathy from control subjects showed good predictive capability (Q 2cumulated = 0.57). Thirty-eight metabolites appeared to be the most significant variables, defining a Leber's hereditary optic neuropathy metabolic signature that revealed decreased concentrations of all proteinogenic amino acids, spermidine, putrescine, isovaleryl-carnitine, propionyl-carnitine and five sphingomyelin species, together with increased concentrations of 10 phosphatidylcholine species. This signature was not reproduced by the inhibition of complex I with rotenone or piericidin A in control fibroblasts. The importance of sphingomyelins and phosphatidylcholines in the Leber's hereditary optic neuropathy signature, together with the decreased amino acid pool, suggested an involvement of the endoplasmic reticulum. This was confirmed by the significantly increased phosphorylation of PERK and eIF2α, as well as the greater expression of C/EBP homologous protein and the increased XBP1 splicing, in fibroblasts from affected patients, all these changes being reversed by the endoplasmic reticulum stress inhibitor, TUDCA (tauroursodeoxycholic acid). Thus, our metabolomic analysis reveals a pharmacologically-reversible endoplasmic reticulum stress in complex I-related Leber's hereditary optic neuropathy fibroblasts, a finding that may open up new therapeutic perspectives for the treatment of Leber's hereditary optic neuropathy with endoplasmic reticulum-targeting drugs.


Asunto(s)
ADN Mitocondrial/genética , Complejo I de Transporte de Electrón/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Mutación/genética , Atrofia Óptica Hereditaria de Leber/metabolismo , Adulto , Anciano , Células Cultivadas , Estudios de Cohortes , Complejo I de Transporte de Electrón/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Insecticidas/farmacología , Masculino , Metabolómica/métodos , Persona de Mediana Edad , Atrofia Óptica Hereditaria de Leber/genética , Atrofia Óptica Hereditaria de Leber/patología , Piridinas/farmacología , Rotenona/farmacología , Adulto Joven
4.
Int J Biochem Cell Biol ; 77(Pt A): 10-14, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27208732

RESUMEN

Metabolic syndrome due to its association with increased risk of cardiovascular diseases and cardiac mortality, comprises a cluster of metabolic abnormalities such as central obesity, hyperglycemia, dyslipidemia, and hypertension. Recent studies have shown that metabolic syndrome patients exhibit impaired nitric oxide-mediated vasodilatation leading to endothelial dysfunction in addition to insulin resistance. Interestingly, development and maintenance of the unfolded protein response of the endoplasmic reticulum stress revealed a surprisingly direct link with metabolic syndrome and endothelial dysfunction. On the other hand, in metabolic disorders, interaction between endoplasmic reticulum and mitochondria is mandatory for the generation of mitochondrial oxidative stress and perturbation of mitochondrial function accounting, at least in part, for vascular dysfunction. Herein, we review the impact of the dialogue between endoplasmic reticulum and mitochondria in modulating the cellular signals governing vascular alterations associated to metabolic disorders.


Asunto(s)
Retículo Endoplásmico/patología , Enfermedades Metabólicas/patología , Mitocondrias/patología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...