Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39131277

RESUMEN

We present haplotype-resolved reference genomes and comparative analyses of six ape species, namely: chimpanzee, bonobo, gorilla, Bornean orangutan, Sumatran orangutan, and siamang. We achieve chromosome-level contiguity with unparalleled sequence accuracy (<1 error in 500,000 base pairs), completely sequencing 215 gapless chromosomes telomere-to-telomere. We resolve challenging regions, such as the major histocompatibility complex and immunoglobulin loci, providing more in-depth evolutionary insights. Comparative analyses, including human, allow us to investigate the evolution and diversity of regions previously uncharacterized or incompletely studied without bias from mapping to the human reference. This includes newly minted gene families within lineage-specific segmental duplications, centromeric DNA, acrocentric chromosomes, and subterminal heterochromatin. This resource should serve as a definitive baseline for all future evolutionary studies of humans and our closest living ape relatives.

2.
bioRxiv ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39091785

RESUMEN

Long-read sequencing technologies have revolutionized genome assembly producing near-complete chromosome assemblies for numerous organisms, which are invaluable to research in many fields. However, regions with complex repetitive structure continue to represent a challenge for genome assembly algorithms, particularly in areas with high heterozygosity. Robust and comprehensive solutions for the assessment of assembly accuracy and completeness in these regions do not exist. In this study we focus on the assembly of biomedically important antibody-encoding immunoglobulin (IG) loci, which are characterized by complex duplications and repeat structures. High-quality full-length assemblies for these loci are critical for resolving haplotype-level annotations of IG genes, without which, functional and evolutionary studies of antibody immunity across vertebrates are not tractable. To address these challenges, we developed a pipeline, "CloseRead", that generates multiple assembly verification metrics for analysis and visualization. These metrics expand upon those of existing quality assessment tools and specifically target complex and highly heterozygous regions. Using CloseRead, we systematically assessed the accuracy and completeness of IG loci in publicly available assemblies of 74 vertebrate species, identifying problematic regions. We also demonstrated that inspecting assembly graphs for problematic regions can both identify the root cause of assembly errors and illuminate solutions for improving erroneous assemblies. For a subset of species, we were able to correct assembly errors through targeted reassembly. Together, our analysis demonstrated the utility of assembly assessment in improving the completeness and accuracy of IG loci across species.

3.
bioRxiv ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39091872

RESUMEN

New high-quality human genome assemblies derived from lymphoblastoid cell lines (LCLs) provide reference genomes and pangenomes for genomics studies. However, the characteristics of LCLs pose technical challenges to profiling immunoglobulin (IG) genes. IG loci in LCLs contain a mixture of germline and somatically recombined haplotypes, making them difficult to genotype or assemble accurately. To address these challenges, we introduce IGLoo, a software tool that implements novel methods for analyzing sequence data and genome assemblies derived from LCLs. IGLoo characterizes somatic V(D)J recombination events in the sequence data and identifies the breakpoints and missing IG genes in the LCL-based assemblies. Furthermore, IGLoo implements a novel reassembly framework to improve germline assembly quality by integrating information about somatic events and population structural variantions in the IG loci. We applied IGLoo to study the assemblies from the Human Pangenome Reference Consortium, providing new insights into the mechanisms, gene usage, and patterns of V(D)J recombination, causes of assembly fragmentation in the IG heavy chain (IGH) locus, and improved representation of the IGH assemblies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA