Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 21(7): e3002211, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37498968

RESUMEN

The hexagonal cells built by honey bees and social wasps are an example of adaptive architecture; hexagons minimize material use, while maximizing storage space and structural stability. Hexagon building evolved independently in the bees and wasps, but in some species of both groups, the hexagonal cells are size dimorphic-small worker cells and large reproductive cells-which forces the builders to join differently sized hexagons together. This inherent tiling problem creates a unique opportunity to investigate how similar architectural challenges are solved across independent evolutionary origins. We investigated how 5 honey bee and 5 wasp species solved this problem by extracting per-cell metrics from 22,745 cells. Here, we show that all species used the same building techniques: intermediate-sized cells and pairs of non-hexagonal cells, which increase in frequency with increasing size dimorphism. We then derive a simple geometric model that explains and predicts the observed pairing of non-hexagonal cells and their rate of occurrence. Our results show that despite different building materials, comb configurations, and 179 million years of independent evolution, honey bees and social wasps have converged on the same solutions for the same architectural problems, thereby revealing fundamental building properties and evolutionary convergence in construction behavior.


Asunto(s)
Abejas , Comportamiento de Nidificación , Avispas , Animales
2.
J Vis Exp ; (151)2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31566593

RESUMEN

For vespine wasps, colony productivity is typically estimated by counting the number of larval cells. This paper presents an improved method that enables researchers to estimate more accurately the number of adults produced, counting the number of meconia (the stools left in the cells by wasp larvae when pupating into adults, per 100 cells) in each comb. This method can be applied before or after colony collapse (i.e., in active or inactive nests). The paper also describes how to locate wild Vespula wasp colonies by "flagging" wasp baits and chasing the wasp collecting them, using a method traditionally performed by local people in central Japan (as illustrated in the associated video). The Vespula chasing method described has several advantages: it is easy to reinitiate the chase from a point where the forager flying back to the nest was lost, and it is easy to pinpoint the nest location as marked wasps often lose their flag at the nest entrance. These methods for estimating colony productivity and collecting nests can be valuable for researchers studying social wasps.


Asunto(s)
Conducta Animal , Avispas/fisiología , Animales , Japón , Larva , Avispas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...