Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
EMBO J ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719996

RESUMEN

Extracellular vesicles (EVs) are important mediators of communication between cells. Here, we reveal a new mode of intercellular communication by melanosomes, large EVs secreted by melanocytes for melanin transport. Unlike small EVs, which are disintegrated within the receiver cell, melanosomes stay intact within them, gain a unique protein signature, and can then be further transferred to another cell as "second-hand" EVs. We show that melanoma-secreted melanosomes passaged through epidermal keratinocytes or dermal fibroblasts can be further engulfed by resident macrophages. This process leads to macrophage polarization into pro-tumor or pro-immune cell infiltration phenotypes. Melanosomes that are transferred through fibroblasts can carry AKT1, which induces VEGF secretion from macrophages in an mTOR-dependent manner, promoting angiogenesis and metastasis in vivo. In melanoma patients, macrophages that are co-localized with AKT1 are correlated with disease aggressiveness, and immunotherapy non-responders are enriched in macrophages containing melanosome markers. Our findings suggest that interactions mediated by second-hand extracellular vesicles contribute to the formation of the metastatic niche, and that blocking the melanosome cues of macrophage diversification could be helpful in halting melanoma progression.

2.
J Proteome Res ; 23(4): 1420-1432, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38497760

RESUMEN

Colitis has a multifactorial pathogenesis with a strong cross-talk among microbiota, hypoxia, and tissue metabolism. Here, we aimed to characterize the molecular signature of the disease in symptomatic and presymptomatic stages of the inflammatory process at the tissue and fecal level. The study is based on two different murine models for colitis, and HR-MAS NMR on "intact" colon tissues and LC-MS/MS on colon tissue extracts were used to derive untargeted metabolomics and proteomics information, respectively. Solution NMR was used to derive metabolomic profiles of the fecal extracts. By combining metabolomic and proteomic analyses of the tissues, we found increased anaerobic glycolysis, accompanied by an altered citric acid cycle and oxidative phosphorylation in inflamed colons; these changes associate with inflammation-induced hypoxia taking place in colon tissues. Different colitis states were also characterized by significantly different metabolomic profiles of fecal extracts, attributable to both the dysbiosis characteristic of colitis as well as the dysregulated tissue metabolism. Strong and distinctive tissue and fecal metabolomic signatures can be detected before the onset of symptoms. Therefore, untargeted metabolomics of tissues and fecal extracts provides a comprehensive picture of the changes accompanying the disease onset already at preclinical stages, highlighting the diagnostic potential of global metabolomics for inflammatory diseases.


Asunto(s)
Colitis , Proteómica , Ratones , Animales , Cromatografía Liquida , Espectrometría de Masas en Tándem , Colitis/diagnóstico , Colitis/inducido químicamente , Metabolómica , Hipoxia
3.
Biomedicines ; 12(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38398037

RESUMEN

Proteolysis of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) plays a crucial role in the immune response to bacterial infections. Here we report the secretion of MMPs associated with proteolytic extracellular vesicles (EVs) released by macrophages in response to Salmonella enterica serovar Typhimurium infection. Specifically, we used global proteomics, in vitro, and in vivo approaches to investigate the composition and function of these proteolytic EVs. Using a model of S. Typhimurium infection in murine macrophages, we isolated and characterized a population of small EVs. Bulk proteomics analysis revealed significant changes in protein cargo of naïve and S. Typhimurium-infected macrophage-derived EVs, including the upregulation of MMP-9. The increased levels of MMP-9 observed in immune cells exposed to S. Typhimurium were found to be regulated by the toll-like receptor 4 (TLR-4)-mediated response to bacterial lipopolysaccharide. Macrophage-derived EV-associated MMP-9 enhanced the macrophage invasion through Matrigel as selective inhibition of MMP-9 reduced macrophage invasion. Systemic administration of fluorescently labeled EVs into immunocompromised mice demonstrated that EV-associated MMP activity facilitated increased accumulation of EVs in spleen and liver tissues. This study suggests that macrophages secrete proteolytic EVs to enhance invasion and ECM remodeling during bacterial infections, shedding light on an essential aspect of the immune response.

4.
Trends Mol Med ; 30(2): 147-163, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38036391

RESUMEN

Proteolytic processes on cell surfaces and extracellular matrix (ECM) sustain cell behavior and tissue integrity in health and disease. Matrix metalloproteases (MMPs) and a disintegrin and metalloproteases (ADAMs) remodel cell microenvironments through irreversible proteolysis of ECM proteins and cell surface bioactive molecules. Pan-MMP inhibitors in inflammation and cancer clinical trials have encountered challenges due to promiscuous activities of MMPs. Systems biology advances revealed that MMPs initiate multifactorial proteolytic cascades, creating new substrates, activating or suppressing other MMPs, and generating signaling molecules. This review highlights the intricate network that underscores the role of MMPs beyond individual substrate-enzyme activities. Gaining insight into MMP function and tissue specificity is crucial for developing effective drug discovery strategies and novel therapeutics. This requires considering the dynamic cellular processes and consequences of network proteolysis.


Asunto(s)
Metaloproteasas , Neoplasias , Humanos , Proteolisis , Metaloproteasas/análisis , Metaloproteasas/metabolismo , Neoplasias/metabolismo , Matriz Extracelular/metabolismo , Inflamación/metabolismo , Microambiente Tumoral
5.
bioRxiv ; 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37961223

RESUMEN

Tumor-infiltrating macrophages support critical steps in tumor progression, and their accumulation in the tumor microenvironment (TME) is associated with adverse outcomes and therapeutic resistance across human cancers. In the TME, macrophages adopt diverse phenotypic alterations, giving rise to heterogeneous immune activation states and induction of cell cycle. While the transcriptional profiles of these activation states are well-annotated across human cancers, the underlying signals that regulate macrophage heterogeneity and accumulation remain incompletely understood. Here, we leveraged a novel ex vivo organotypic TME (oTME) model of breast cancer, in vivo murine models, and human samples to map the determinants of functional heterogeneity of TME macrophages. We identified a subset of F4/80highSca-1+ self-renewing macrophages maintained by type-I interferon (IFN) signaling and requiring physical contact with cancer-associated fibroblasts. We discovered that the contact-dependent self-renewal of TME macrophages is mediated via Notch4, and its inhibition abrogated tumor growth of breast and ovarian carcinomas in vivo, as well as lung dissemination in a PDX model of triple-negative breast cancer (TNBC). Through spatial multi-omic profiling of protein markers and transcriptomes, we found that the localization of macrophages further dictates functionally distinct but reversible phenotypes, regardless of their ontogeny. Whereas immune-stimulatory macrophages (CD11C+CD86+) populated the tumor epithelial nests, the stroma-associated macrophages (SAMs) were proliferative, immunosuppressive (Sca-1+CD206+PD-L1+), resistant to CSF-1R depletion, and associated with worse patient outcomes. Notably, following cessation of CSF-1R depletion, macrophages rebounded primarily to the SAM phenotype, which was associated with accelerated growth of mammary tumors. Our work reveals the spatial determinants of macrophage heterogeneity in breast cancer and highlights the disruption of macrophage self-renewal as a potential new therapeutic strategy.

7.
Neurophotonics ; 10(1): 015008, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36970015

RESUMEN

Significance: Perineuronal nets (PNNs) are extracellular matrix structures implicated in learning, memory, information processing, synaptic plasticity, and neuroprotection. However, our understanding of mechanisms governing the evidently important contribution of PNNs to central nervous system function is lacking. A primary cause for this gap of knowledge is the absence of direct experimental tools to study their role in vivo. Aim: We introduce a robust approach for quantitative longitudinal imaging of PNNs in brains of awake mice at subcellular resolution. Approach: We label PNNs in vivo with commercially available compounds and monitor their dynamics with two-photon imaging. Results: Using our approach, we show that it is possible to longitudinally follow the same PNNs in vivo while monitoring degradation and reconstitution of PNNs. We demonstrate the compatibility of our method to simultaneously monitor neuronal calcium dynamics in vivo and compare the activity of neurons with and without PNNs. Conclusion: Our approach is tailored for studying the intricate role of PNNs in vivo, while paving the road for elucidating their role in different neuropathological conditions.

8.
Proc Natl Acad Sci U S A ; 119(42): e2213744119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215509

RESUMEN

Acute and chronic pancreatitis, the latter associated with fibrosis, are multifactorial inflammatory disorders and leading causes of gastrointestinal disease-related hospitalization. Despite the global health burden of pancreatitis, currently, there are no effective therapeutic agents. In this regard, the protease A Disintegrin And Metalloproteinase 17 (ADAM17) mediates inflammatory responses through shedding of bioactive inflammatory cytokines and mediators, including tumor necrosis factor α (TNFα) and the soluble interleukin (IL)-6 receptor (sIL-6R), the latter of which drives proinflammatory IL-6 trans-signaling. However, the role of ADAM17 in pancreatitis is unclear. To address this, Adam17ex/ex mice-which are homozygous for the hypomorphic Adam17ex allele resulting in marked reduction in ADAM17 expression-and their wild-type (WT) littermates were exposed to the cerulein-induced acute pancreatitis model, and acute (1-wk) and chronic (20-wk) pancreatitis models induced by the cigarette smoke carcinogen nicotine-derived nitrosamine ketone (NNK). Our data reveal that ADAM17 expression was up-regulated in pancreatic tissues of animal models of pancreatitis. Moreover, the genetic (Adam17ex/ex mice) and therapeutic (ADAM17 prodomain inhibitor [A17pro]) targeting of ADAM17 ameliorated experimental pancreatitis, which was associated with a reduction in the IL-6 trans-signaling/STAT3 axis. This led to reduced inflammatory cell infiltration, including T cells and neutrophils, as well as necrosis and fibrosis in the pancreas. Furthermore, up-regulation of the ADAM17/IL-6 trans-signaling/STAT3 axis was a feature of pancreatitis patients. Collectively, our findings indicate that the ADAM17 protease plays a pivotal role in the pathogenesis of pancreatitis, which could pave the way for devising novel therapeutic options to be deployed against this disease.


Asunto(s)
Nitrosaminas , Pancreatitis , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Enfermedad Aguda , Animales , Carcinógenos , Ceruletida/toxicidad , Citocinas , Desintegrinas , Endopeptidasas , Fibrosis , Interleucina-6/genética , Interleucina-6/metabolismo , Cetonas , Ratones , Nicotina , Pancreatitis/tratamiento farmacológico , Pancreatitis/genética , Péptido Hidrolasas , Factor de Necrosis Tumoral alfa/metabolismo
9.
NPJ Parkinsons Dis ; 8(1): 103, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35948563

RESUMEN

Several mutations that cause Parkinson's disease (PD) have been identified over the past decade. These account for 15-25% of PD cases; the rest of the cases are considered sporadic. Currently, it is accepted that PD is not a single monolithic disease but rather a constellation of diseases with some common phenotypes. While rodent models exist for some of the PD-causing mutations, research on the sporadic forms of PD is lagging due to a lack of cellular models. In our study, we differentiated PD patient-derived dopaminergic (DA) neurons from the induced pluripotent stem cells (iPSCs) of several PD-causing mutations as well as from sporadic PD patients. Strikingly, we observed a common neurophysiological phenotype: neurons derived from PD patients had a severe reduction in the rate of synaptic currents compared to those derived from healthy controls. While the relationship between mutations in genes such as the SNCA and LRRK2 and a reduction in synaptic transmission has been investigated before, here we show evidence that the pathogenesis of the synapses in neurons is a general phenotype in PD. Analysis of RNA sequencing results displayed changes in gene expression in different synaptic mechanisms as well as other affected pathways such as extracellular matrix-related pathways. Some of these dysregulated pathways are common to all PD patients (monogenic or idiopathic). Our data, therefore, show changes that are central and convergent to PD and suggest a strong involvement of the tetra-partite synapse in PD pathophysiology.

10.
Viruses ; 14(8)2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893698

RESUMEN

The COVID-19 pandemic caused by the SARS-CoV-2 infection induced lung inflammation characterized by cytokine storm and fulminant immune response of both resident and migrated immune cells, accelerating alveolar damage. In this work we identified members of the matrix metalloprotease (MMPs) family associated with lung extra-cellular matrix (ECM) destruction using K18-hACE2-transgenic mice (K18-hACE2) infected intranasally with SARS-CoV-2. Five days post infection, the lungs exhibited overall alveolar damage of epithelial cells and massive leukocytes infiltration. A substantial pulmonary increase in MMP8, MMP9, and MMP14 in the lungs post SARS-CoV-2 infection was associated with degradation of ECM components including collagen, laminin, and proteoglycans. The process of tissue damage and ECM degradation during SARS-CoV-2 lung infection is suggested to be associated with activity of members of the MMPs family, which in turn may be used as a therapeutic intervention.


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Animales , Modelos Animales de Enfermedad , Humanos , Pulmón/patología , Melfalán , Ratones , Ratones Transgénicos , Pandemias , Peptidil-Dipeptidasa A/metabolismo , gammaglobulinas
11.
Cell ; 185(7): 1208-1222.e21, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35305314

RESUMEN

The tumor microenvironment hosts antibody-secreting cells (ASCs) associated with a favorable prognosis in several types of cancer. Patient-derived antibodies have diagnostic and therapeutic potential; yet, it remains unclear how antibodies gain autoreactivity and target tumors. Here, we found that somatic hypermutations (SHMs) promote antibody antitumor reactivity against surface autoantigens in high-grade serous ovarian carcinoma (HGSOC). Patient-derived tumor cells were frequently coated with IgGs. Intratumoral ASCs in HGSOC were both mutated and clonally expanded and produced tumor-reactive antibodies that targeted MMP14, which is abundantly expressed on the tumor cell surface. The reversion of monoclonal antibodies to their germline configuration revealed two types of classes: one dependent on SHMs for tumor binding and a second with germline-encoded autoreactivity. Thus, tumor-reactive autoantibodies are either naturally occurring or evolve through an antigen-driven selection process. These findings highlight the origin and potential applicability of autoantibodies directed at surface antigens for tumor targeting in cancer patients.


Asunto(s)
Anticuerpos Antineoplásicos , Neoplasias Ováricas , Anticuerpos Monoclonales , Autoanticuerpos , Autoantígenos , Femenino , Humanos , Neoplasias Ováricas/genética , Microambiente Tumoral
12.
J Exp Med ; 219(1)2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34919140

RESUMEN

Metastasis is the major cause of death in cancer patients. Circulating tumor cells need to migrate through the endothelial layer of blood vessels to escape the hostile circulation and establish metastases at distant organ sites. Here, we identified the membrane-bound metalloprotease ADAM17 on endothelial cells as a key driver of metastasis. We show that TNFR1-dependent tumor cell-induced endothelial cell death, tumor cell extravasation, and subsequent metastatic seeding is dependent on the activity of endothelial ADAM17. Moreover, we reveal that ADAM17-mediated TNFR1 ectodomain shedding and subsequent processing by the γ-secretase complex is required for the induction of TNF-induced necroptosis. Consequently, genetic ablation of ADAM17 in endothelial cells as well as short-term pharmacological inhibition of ADAM17 prevents long-term metastases formation in the lung. Thus, our data identified ADAM17 as a novel essential regulator of necroptosis and as a new promising target for antimetastatic and advanced-stage cancer therapies.


Asunto(s)
Proteína ADAM17/antagonistas & inhibidores , Células Endoteliales/metabolismo , Necroptosis , Neoplasias/etiología , Neoplasias/patología , Animales , Antineoplásicos/farmacología , Biomarcadores , Biomarcadores de Tumor , Comunicación Celular , Muerte Celular , Susceptibilidad a Enfermedades/inmunología , Humanos , Necroptosis/genética , Invasividad Neoplásica , Metástasis de la Neoplasia , Siembra Neoplásica , Neoplasias/metabolismo , Neoplasias/terapia , Proteolisis , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
13.
Front Genet ; 12: 676182, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34691138

RESUMEN

The Hippo signaling pathway has been shown to be involved in regulating cellular identity, cell/tissue size maintenance and mechanotransduction. The Hippo pathway consists of a kinase cascade which determines the nucleo-cytoplasmic localization of YAP in the cell. YAP is the effector protein in the Hippo pathway, which acts as a transcriptional cofactor for TEAD. Phosphorylation of YAP upon activation of the Hippo pathway prevents it from entering the nucleus and abrogates its function in the transcription of the target genes. In Cnidaria, the information on the regulatory roles of the Hippo pathway is virtually lacking. Here, we report the existence of a complete set of Hippo pathway core components in Hydra for the first time. By studying their phylogeny and domain organization, we report evolutionary conservation of the components of the Hippo pathway. Protein modelling suggested the conservation of YAP-TEAD interaction in Hydra. Further, we characterized the expression pattern of the homologs of yap, hippo, mob and sav in Hydra using whole-mount RNA in situ hybridization and report their possible role in stem cell maintenance. Immunofluorescence assay revealed that Hvul_YAP expressing cells occur in clusters in the body column and are excluded in the terminally differentiated regions. Actively proliferating cells marked by Ki67 exhibit YAP colocalization in their nuclei. Strikingly, a subset of these colocalized cells is actively recruited to the newly developing bud. Disruption of the YAP-TEAD interaction increased the budding rate indicating a critical role of YAP in regulating cell proliferation in Hydra. Collectively, we posit that the Hippo pathway is an essential signaling system in Hydra; its components are ubiquitously expressed in the Hydra body column and play a crucial role in Hydra tissue homeostasis.

14.
JACS Au ; 1(7): 1076-1085, 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34337607

RESUMEN

Although it is well-known that limited local mutations of enzymes, such as matrix metalloproteinases (MMPs), may change enzyme activity by orders of magnitude as well as its stability, the completely rational design of proteins is still challenging. These local changes alter the electrostatic potential and thus local electrostatic fields, which impacts the dynamics of water molecules close the protein surface. Here we show by a combined computational design, experimental, and molecular dynamics (MD) study that local mutations have not only a local but also a global effect on the solvent: In the specific case of the matrix metalloprotease MMP14, we found that the nature of local mutations, coupled with surface morphology, have the ability to influence large patches of the water hydrogen-bonding network at the protein surface, which is correlated with stability. The solvent contribution can be experimentally probed via terahertz (THz) spectroscopy, thus opening the door to the exciting perspective of rational protein design in which a systematic tuning of hydration water properties allows manipulation of protein stability and enzymatic activity.

15.
Cancers (Basel) ; 13(7)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918254

RESUMEN

Matrix metalloproteases (MMPs) undergo post-translational modifications including pro-domain shedding. The activated forms of these enzymes are effective drug targets, but generating potent biological inhibitors against them remains challenging. We report the generation of anti-MMP-7 inhibitory monoclonal antibody (GSM-192), using an alternating immunization strategy with an active site mimicry antigen and the activated enzyme. Our protocol yielded highly selective anti-MMP-7 monoclonal antibody, which specifically inhibits MMP-7's enzyme activity with high affinity (IC50 = 132 ± 10 nM). The atomic model of the MMP-7-GSM-192 Fab complex exhibited antibody binding to unique epitopes at the rim of the enzyme active site, sterically preventing entry of substrates into the catalytic cleft. In human PDAC biopsies, tissue staining with GSM-192 showed characteristic spatial distribution of activated MMP-7. Treatment with GSM-192 in vitro induced apoptosis via stabilization of cell surface Fas ligand and retarded cell migration. Co-treatment with GSM-192 and chemotherapeutics, gemcitabine and oxaliplatin elicited a synergistic effect. Our data illustrate the advantage of precisely targeting catalytic MMP-7 mediated disease specific activity.

16.
Matrix Biol ; 96: 47-68, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33246101

RESUMEN

Identification of early processes leading to complex tissue pathologies, such as inflammatory bowel diseases, poses a major scientific and clinical challenge that is imperative for improved diagnosis and treatment. Most studies of inflammation onset focus on cellular processes and signaling molecules, while overlooking the environment in which they take place, the continuously remodeled extracellular matrix. In this study, we used colitis models for investigating extracellular-matrix dynamics during disease onset, while treating the matrix as a complete and defined entity. Through the analysis of matrix structure, stiffness and composition, we unexpectedly revealed that even prior to the first clinical symptoms, the colon displays its own unique extracellular-matrix signature and found specific markers of clinical potential, which were also validated in human subjects. We also show that the emergence of this pre-symptomatic matrix is mediated by subclinical infiltration of immune cells bearing remodeling enzymes. Remarkably, whether the inflammation is chronic or acute, its matrix signature converges at pre-symptomatic states. We suggest that the existence of a pre-symptomatic extracellular-matrix is general and relevant to a wide range of diseases.


Asunto(s)
Biomarcadores/metabolismo , Colitis Ulcerosa/patología , Matriz Extracelular/patología , Interleucina-10/genética , Animales , Estudios de Casos y Controles , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestructura , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Aprendizaje Automático , Masculino , Ratones , Piroxicam/efectos adversos , Pronóstico , Proteómica
17.
Sci Rep ; 10(1): 19116, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33154422

RESUMEN

Various respiratory viral infections in general and seasonal influenza in particular may increase the susceptibility to bacterial infections. Plague caused by Yersinia pestis endangers large populations during outbreaks or bioterrorism attacks. Recommended antibiotic countermeasures include well-established protocols based on animal studies and corroborated by effective treatment of human cases. Until now, prior exposure to viral respiratory infections was not taken into consideration when selecting the appropriate treatment for plague. Here, we show that as late as 25 days after exposure to influenza virus, convalescent mice still exhibited an increased susceptibility to sublethal doses of Y. pestis, presented with aberrant cytokine expression, and impaired neutrophil infiltration in the lungs. Increased levels of M2 alveolar macrophages and type II epithelial cells, as well as induction in metalloproteases expression and collagen and laminin degradation, suggested that the previous viral infection was under resolution, correlating with enhanced susceptibility to plague. Surprisingly, postexposure prophylaxis treatment with the recommended drugs revealed that ciprofloxacin was superior to doxycycline in mice recovering from influenza infection. These results suggest that after an influenza infection, the consequences, such as impaired immunity and lung tissue remodeling and damage, should be considered when treating subsequent Y. pestis exposure.


Asunto(s)
Antibacterianos/uso terapéutico , Infecciones por Orthomyxoviridae/complicaciones , Peste/tratamiento farmacológico , Yersinia pestis , Animales , Antibacterianos/administración & dosificación , Ciprofloxacina/administración & dosificación , Ciprofloxacina/uso terapéutico , Susceptibilidad a Enfermedades , Doxiciclina/administración & dosificación , Doxiciclina/uso terapéutico , Pulmón/efectos de los fármacos , Pulmón/microbiología , Macrófagos Alveolares/efectos de los fármacos , Ratones , Infiltración Neutrófila/efectos de los fármacos , Peste/complicaciones , Resultado del Tratamiento
18.
Int J Mol Sci ; 21(21)2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33147779

RESUMEN

Hyaline fibromatosis syndrome (HFS), resulting from ANTXR2 mutations, is an ultra-rare disease that causes intestinal lymphangiectasia and protein-losing enteropathy (PLE). The mechanisms leading to the gastrointestinal phenotype in these patients are not well defined. We present two patients with congenital diarrhea, severe PLE and unique clinical features resulting from deleterious ANTXR2 mutations. Intestinal organoids were generated from one of the patients, along with CRISPR-Cas9 ANTXR2 knockout, and compared with organoids from two healthy controls. The ANTXR2-deficient organoids displayed normal growth and polarity, compared to controls. Using an anthrax-toxin assay we showed that the c.155C>T mutation causes loss-of-function of ANTXR2 protein. An intrinsic defect of monolayer formation in patient-derived or ANTXR2KO organoids was not apparent, suggesting normal epithelial function. However, electron microscopy and second harmonic generation imaging showed abnormal collagen deposition in duodenal samples of these patients. Specifically, collagen VI, which is known to bind ANTXR2, was highly expressed in the duodenum of these patients. In conclusion, despite resistance to anthrax-toxin, epithelial cell function, and specifically monolayer formation, is intact in patients with HFS. Nevertheless, loss of ANTXR2-mediated signaling leads to collagen VI accumulation in the duodenum and abnormal extracellular matrix composition, which likely plays a role in development of PLE.


Asunto(s)
Colágeno/metabolismo , Duodeno/metabolismo , Síndrome de Fibromatosis Hialina/metabolismo , Enteropatías Perdedoras de Proteínas/metabolismo , Receptores de Péptidos/genética , Antígenos Bacterianos/química , Toxinas Bacterianas/química , Sistemas CRISPR-Cas , Consanguinidad , Diarrea/congénito , Matriz Extracelular/metabolismo , Humanos , Síndrome de Fibromatosis Hialina/genética , Lactante , Masculino , Microscopía Electrónica , Mutación , Fenotipo , Enteropatías Perdedoras de Proteínas/genética , Receptores de Péptidos/deficiencia , Transducción de Señal
20.
J Exp Biol ; 223(Pt 20)2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-32958523

RESUMEN

The bell-shaped members of the Cnidaria typically move around by swimming, whereas the Hydra polyp can perform locomotion on solid substrates in an aquatic environment. To address the biomechanics of locomotion on rigid substrates, we studied the 'somersaulting' locomotion in Hydra We applied atomic force microscopy to measure the local mechanical properties of Hydra's body column and identified the existence of differential Young's modulus between the shoulder region versus rest of the body column at 3:1 ratio. We show that somersaulting primarily depends on differential tissue stiffness of the body column and is explained by computational models that accurately recapitulate the mechanics involved in this process. We demonstrate that perturbation of the observed stiffness variation in the body column by modulating the extracellular matrix polymerization impairs the 'somersault' movement. These results provide a mechanistic basis for the evolutionary significance of differential extracellular matrix properties and tissue stiffness.


Asunto(s)
Hydra , Animales , Fenómenos Biomecánicos , Módulo de Elasticidad , Locomoción , Microscopía de Fuerza Atómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...