Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(1): 328-335, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38131085

RESUMEN

We report the modular preparation of dihydro-1,2,5-thiodiazole dioxide heterocycles starting from methyl ketones and primary amines. This one-pot, three-component coupling employs 2,3-dimethylimidazole-1-sulfonyl azide triflate as a coupling reagent and oxidant. The transformation is scalable and various ketones and amines can be used, yielding thiodiazole dioxide products in up to 89% yield. In addition, 15N- and 13C-labeling studies suggest a mechanism involving a 1,2-nitrogen migration. Together with the mechanistic studies, DFT calculations provide insight into the reaction pathway and set the stage for further exploration of the mechanistic nuances of reactions that use sulfamoyl azides. In combination with the demonstrated modularity of the approach reported herein, the derivatization of the thiodiazole dioxide products highlights the potential of this methodology to rapidly access diverse chemical structures.

2.
World J Microbiol Biotechnol ; 38(8): 141, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35710855

RESUMEN

Mineral lubricating oils are widely used in various industrial sectors for their applications in maintenance and functioning of machineries. However, indiscriminate dumping of these used oils have resulted in polluting the natural reservoirs which subsequently destroys ecological balance. Bacteria can emulsify or lower surface tension between phases of immiscible substrates and can acquire them as their carbon and energy sources. Such a phenomenon is mediated by production of extracellular polymers which can function as eminent surface active compounds based on their surfactant or emulsifying nature. The comparison between bacterial strains (Gram-positive Bacillus stratosphericus A15 and Gram-negative Ochrobactrum pseudintermedium C1) on utilization of pure straight chain hydrocarbons, waste mineral lubricating oils as sole carbon source and chemical characterization of the synthesized surface active compounds were studied. Characterization analysis by Ultraviolet Visible spectrophotometry, Fourier transform infrared spectroscopy, Nuclear Magnetic Resonance spectroscopy, Carbon-Hydrogen-Nitrogen analysis has given detailed structural elucidation of surface active compounds. The contrasting nature of bacterial strains in utilization of different hydrocarbons of waste mineral lubricating oils was observed in Gas Chromatography-Mass Spectroscopy analysis. The variation between both strains in utilization of hydrocarbons can be manifested in chemical structural differences and properties of the produced surface active compounds. Scanning Electron Microscopy has given detailed insight into the microstructural difference of the compounds. The utilization of lubricating oils can address waste disposal problem and offer an economical feasible approach for bacterial production of surface active compounds. Our results suggest that these surface active compounds can maneuver applications in environmental bioremediation and agriculture, pharmaceuticals and food as functional biomaterials.


Asunto(s)
Bacillus , Ochrobactrum , Biodegradación Ambiental , Carbono , Hidrocarburos , Minerales , Aceites de Plantas , Tensoactivos
3.
Molecules ; 26(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34946685

RESUMEN

Ghrelin is a 28-residue peptide hormone produced by stomach P/D1 cells located in oxyntic glands of the fundus mucosa. Post-translational octanoylation of its Ser-3 residue, catalyzed by MBOAT4 (aka ghrelin O-acyl transferase (GOAT)), is essential for the binding of the hormone to its receptor in target tissues. Physiological roles of acyl ghrelin include the regulation of food intake, growth hormone secretion from the pituitary, and inhibition of insulin secretion from the pancreas. Here, we describe a medicinal chemistry campaign that led to the identification of small lipopeptidomimetics that inhibit GOAT in vitro. These molecules compete directly for substrate binding. We further describe the synthesis of heterocyclic inhibitors that compete at the acyl coenzyme A binding site.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/química , Inhibidores Enzimáticos/química , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/química , Peptidomiméticos/química , Aciltransferasas/metabolismo , Animales , Inhibidores Enzimáticos/síntesis química , Mucosa Gástrica/enzimología , Ghrelina/metabolismo , Lipoilación , Proteínas de la Membrana/metabolismo , Ratones , Peptidomiméticos/síntesis química
4.
Proc Natl Acad Sci U S A ; 117(40): 24679-24690, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32948694

RESUMEN

Peptidomimetic macrocycles have the potential to regulate challenging therapeutic targets. Structures of this type having precise shapes and drug-like character are particularly coveted, but are relatively difficult to synthesize. Our laboratory has developed robust methods that integrate small-peptide units into designed scaffolds. These methods create macrocycles and embed condensed heterocycles to diversify outcomes and improve pharmacological properties. The hypothetical scope of the methodology is vast and far outpaces the capacity of our experimental format. We now describe a computational rendering of our methodology that creates an in silico three-dimensional library of composite peptidic macrocycles. Our open-source platform, CPMG (Composite Peptide Macrocycle Generator), has algorithmically generated a library of 2,020,794,198 macrocycles that can result from the multistep reaction sequences we have developed. Structures are generated based on predicted site reactivity and filtered on the basis of physical and three-dimensional properties to identify maximally diverse compounds for prioritization. For conformational analyses, we also introduce ConfBuster++, an RDKit port of the open-source software ConfBuster, which allows facile integration with CPMG and ready parallelization for better scalability. Our approach deeply probes ligand space accessible via our synthetic methodology and provides a resource for large-scale virtual screening.

5.
Curr Microbiol ; 77(11): 3224-3239, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32876713

RESUMEN

The incessant need to increase crop yields has led to the development of many chemical fertilizers containing NPK (nitrogen-phosphorous-potassium) which can degrade soil health in the long term. In addition, these fertilizers are often leached into nearby water bodies causing algal bloom and eutrophication. Bacterial secondary metabolites exuded into the extracellular space, termed extracellular polymeric substances (EPS) have gained commercial significance because of their biodegradability, non-toxicity, and renewability. In many habitats, bacterial communities faced with adversity will adhere together by production of EPS which also serves to bond them to surfaces. Typically, hygroscopic, EPS retain moisture in desiccating conditions and modulate nutrient exchange. Many plant growth-promoting bacteria (PGPR) combat harsh environmental conditions like salinity, drought, and attack of pathogens by producing EPS. The adhesive nature of EPS promotes soil aggregation and restores moisture thus combating soil erosion and promoting soil fertility. In addition, these molecules play vital roles in maintaining symbiosis and nitrogen fixation thus enhancing sustainability. Thus, along with other commercial applications, EPS show promising avenues for improving agricultural productivity thus helping to address land scarcity as well as minimizing environmental pollution.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Desarrollo Sostenible , Agricultura , Bacterias , Fertilizantes , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...