Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2401787, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38766969

RESUMEN

Cancer is recognized as one of the major causes of mortality, however, early-stage detection can increase the survival chance greatly. It is recognized that folate receptors are gradually overexpressed in the cellular membrane with the progress of cancer from stage 1 to stage 4. Utilizing the fact, herein, developed a porous silica nanoparticle system C1@SiO2-FA-NP; A) impregnated with thermodynamically stable Mn(II) complex (1) molecules within the core of the nanoparticle, and B) surface functionalized with folate units. It exhibited a high longitudinal relaxivity value r1 = 21.45 mM-1s-1 that substantially increased to r1 = 40.97 mM-1s-1 in the presence of 0.67 mM concentration of BSA under the physiological condition. The in vitro fluorescent images after surface conjugation of C1@SiO2-FA-NP with FITC (fluorescein isothiocyanate) buttressed the inclusion of the nanoparticle exclusively within the cancerous HeLa cells than that of healthy HEK293 cells. The importance of the surface-bound folate unit in the nanoparticle is further established by comparing the fluorescent images of HeLa cells in the absence of the group. Finally, the applicability of C1@SiO2-FA-NP as the T1-weighted MRI contrast agent for early-stage cancer diagnosis is established within C57BL/6 mice after infecting the mice with HeLa cells.

2.
ACS Appl Bio Mater ; 7(3): 1831-1841, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38427704

RESUMEN

Since the finding of nephrogenic systemic fibrosis (NFS) in patients with renal impairment and the long-term accumulation of Gd(III) ions in the central nervous system, the search for nongadolinium ion-based MRI contrast agents made of nutrient metal ions has drawn paramount attention. In this context, the development of Mn(II)-based MRI contrast agents has been a subject of interest for the last few decades. Herein, we report a pentadentate ligand (Li2[BenzPic2]) composed of two picolinate moieties and a rigid 1,2,3,4-tetrahydroquinazoline unit and the corresponding bis(aquated) Mn(II) complex (Complex 1). The complex exhibited high thermodynamic stability (log Kcond = 11.62) and kinetic inertness similar to that of the clinically approved Gd(III)-based contrast agent Magnevist. Complex 1 exerted longitudinal relaxivity (r1) of 5.32 mM-1 s-1 at 1.41 T, 37 °C, pH 7.4, and it increased by 3.6-fold in the presence of serum albumin protein, confirming a substantial rigidifying interaction (albumin association constant KA = 1.66 × 103 M-1) between the protein and the amphiphilic (log P = -0.45) contrast agent. An intravenous dose of 0.08 mmol/kg in a healthy mouse, excellent MRI signal intensity enhancement in the vasculature of the mouse liver, and brightened images of the gallbladder, kidney, and liver were realized.


Asunto(s)
Medios de Contraste , Gadolinio DTPA , Humanos , Animales , Ratones , Albúminas , Imagen por Resonancia Magnética , Iones
3.
J Mater Chem B ; 11(34): 8251-8261, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37575086

RESUMEN

Type-1 and type-2 diabetes mellitus are metabolic disorders governed by the functional efficiency of pancreatic ß-cells. The activities of the cells toward insulin production, storage, and secretion are accompanied by Zn(II) ions. Thus, for non-invasive pathology of the cell, developing Zn(II) ion-responsive MRI-contrast agents has earned considerable interest. In this report, we have synthesized a seven-coordinate, mono(aquated) Mn(II) complex (1), which is impregnated within a porous silica nanosphere of size 13.2 nm to engender the Mn(II)-based MRI contrast agent, complex 1@SiO2NP. The surface functionalization of the nanosphere by the Py2Pic organic moiety for the selective binding of Zn(II)-ions yields complex 1@SiO2-Py2PicNP, which exhibits r1 = 13.19 mM-1 s-1. The relaxivity value elevates to 20.38 mM-1 s-1 in the presence of 0.6 mM BSA protein at pH 7.4. Gratifyingly, r1 increases linearly with the increase of Zn(II) ion concentration and reaches 39.01 mM-1 s-1 in the presence of a 40 fold excess of the ions. Thus, Zn(II)-responsive contrast enhancement in vivo is envisaged by employing the nanoparticle. Indeed, a contrast enhancement in the pancreas is observed when complex 1@SiO2-Py2PicNP and a glucose stimulus are administered in fasted healthy C57BL/6 mice at 7 T.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Ratones , Animales , Dióxido de Silicio/metabolismo , Medios de Contraste/metabolismo , Porosidad , Ratones Endogámicos C57BL , Imagen por Resonancia Magnética/métodos , Páncreas/metabolismo , Zinc/metabolismo , Iones/metabolismo
4.
ACS Appl Bio Mater ; 6(2): 681-693, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36662500

RESUMEN

The increased mortality rate due to metastatic breast cancer with poor prognosis has raised concern over its effective therapy. Though various therapies and anticancer drugs have been approved, there is still a lack in the targeting of metastatic triple negative breast cancer (TNBC). We have developed a hybrid nanosystem that was synthesized by fusing exosomes from MCF-7 cells and nanovesicles from the MDA MB-231 cells that would be targeted. The developed nanosystem was characterized by various techniques like Western blotting, AFM, FETEM, DLS, CD, and fluorescence spectroscopy. The hybrid system was used for the delivery of an HDAC inhibitor, Trichostatin A (TSA), in combination with lapatinib (a tyrosine kinase inhibitor) for cotherapy of epithelial to mesenchymal transition (EMT) induced TNBC. This targeted cotherapy module had higher efficiency and effectivity in the reduction of metastatic ability and proliferation of EMT induced MDA MB-231 cells as compared to free inhibitor treatment or untargeted cotherapy. Reduction in the expression of the Wnt/ß-catenin signaling pathway molecules like ß-catenin (by 0.7 fold), Gsk3ß (by 0.6 fold), and pGsk-3ß (0.3 fold) was observed upon treatment. This subsequently resulted in the suppression of EMT markers, thereby resulting in reversing EMT to MET and suppressing metastatic breast cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Transición Epitelial-Mesenquimal , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Vía de Señalización Wnt , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
5.
Dalton Trans ; 51(37): 14138-14149, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36043989

RESUMEN

Contrast-agent enhanced magnetic resonance imaging (MRI) has been under continuous investigation for the conspicuous imaging of lesions and the early-stage detection of tumors. To achieve the development of a T1-weighted contrast agent with a high relaxivity value, herein, porous silica nanoparticles that had internalized about 20 aquated cationic Gd(III) complexes (1) of the hexadentate hydroxyethyl-appended picolinate-based ligand H2hbda were demonstrated. Complex 1 exhibited a longitudinal relaxivity value per mM Gd(III) ions, r1, of 9.05 mM-1 s-1 (pH 7.4, 37 °C, 1.41 T), which increased to 86.41 mM-1 s-1 because of the grafting of complex 1 in the inner core of porous silica nanospheres through electrostatic interactions between the anionic silica surface and the cationic complex 1 molecules. A further augmentation in the relaxivity value to 118.32 mM-1 s-1 was realized because of the interaction of the complex 1@SiO2NPs with serum albumin protein. The synthesized nanosystem was impervious to physiologically available anions (HPO42- and HCO31-) and also kinetically inert, as evidenced via a transmetallation experiment in the presence of Zn(II) ions. The developed complex-incorporated nanomaterial was bio- and hemo-compatible. Cellular uptake measurements employing HeLa cells and the concentration-dependent enhancement in the brightness of in vitro phantom images, recorded under a clinical scanner at 1.5 T, demonstrated that the developed biocompatible 1@SiO2NP complex has promising diagnostic applications as a T1-weighted MRI contrast agent.


Asunto(s)
Medios de Contraste , Nanopartículas , Medios de Contraste/química , Células HeLa , Humanos , Ligandos , Imagen por Resonancia Magnética/métodos , Nanopartículas/química , Porosidad , Albúmina Sérica , Dióxido de Silicio/química , Electricidad Estática
6.
Carbohydr Polym ; 277: 118862, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34893267

RESUMEN

Carbon dots (CDs) have been a promising theranostic tool with high biocompatibility and a tailorable fluorescence profile. Herein, we report the synthesis of highly fluorescent amine-functionalized CDs from low molecular weight chitosan (LMWC) and silk-fibroin (SF) blends. The synthesized CDs were quasi-spherical in shape with a size of 3 ± 1.5 nm. A significant increase in fluorescent intensity and quantum yield was achieved upon increasing the SF content due to nitrogen doping. For inducing target specificity to cancer cells, biotin was covalently conjugated to the CDs, and the conjugation was determined by FTIR spectroscopy. The conjugate was further loaded with 5-fluorouracil (5-FU) as a model anti-cancer drug. The MTT assay showed increased cytotoxicity of the conjugated CDs in cancer cells compared to normal cells. The live-cell imaging in MCF-7 cell lines showed bright blue-colored fluorescence and increased internalization of the conjugated CDs than the non-conjugate ones due to receptor-mediated endocytosis.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos , Fluorescencia , Fluorouracilo/farmacología , Aminas/química , Antimetabolitos Antineoplásicos/química , Biotina/química , Carbono/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Quitosano/química , Liberación de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Fibroínas/química , Fluorouracilo/química , Humanos , Estructura Molecular , Imagen Óptica , Tamaño de la Partícula , Puntos Cuánticos/química , Espectrometría de Fluorescencia
7.
Nanomedicine (Lond) ; 16(21): 1843-1856, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34369819

RESUMEN

Aim: The primary aim of this study was to develop biomimetic nanocarriers for specific homologous targeting of the anticancer drugs ammonium pyrrolidine dithiocarbamate (PDTC) and doxorubicin. Methods: Membranous nanovesicles were synthesized from a breast cancer cell line (MCF7) by syringe extrusion process and were loaded with PDTC and doxorubicin. Besides their abilities for self-homing, the drug-loaded nanovesicles showed anti-cell proliferative effects via the generation of reactive oxygen species. Results: The nanovesicles demonstrated efficient internalization via homologous targeting. Delivery of PDTC showed a higher killing effect for homologous cell targeting than other cell types. Experimental results demonstrated increased antiproliferative potency of PDTC, which induced apoptosis via reactive oxygen species generation. Conclusion: The developed membrane-derived nanocarrier is an attractive biocompatible system for ex vivo targeted drug delivery.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno
8.
ACS Appl Bio Mater ; 4(12): 8356-8367, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-35005912

RESUMEN

Magnetic resonance imaging has emerged as an indispensable imaging modality for the early-stage diagnosis of many diseases. The imaging in the presence of a contrast agent is always advantageous, as it mitigates the low-sensitivity issue of the measurements and provides excellent contrast in the acquired images even in a short acquisition time. However, the stability and high relaxivity of the contrast agents remained a challenge. Here, molecules of a mononuclear, mono(aquated), thermodynamically stable [log KMnL = 14.80(7) and pMn = 8.97] Mn(II)-complex (1), based on a hexadentate pyridine-picolinate unit-containing ligand (H2PyDPA), were confined within a porous silica nanosphere in a noncovalent fashion to render a stable nanosystem, complex 1@SiO2NP. The entrapped complex 1 (complex 1@SiO2) exhibited r1 = 8.46 mM-1 s-1 and r2 = 33.15 mM-1 s-1 at pH = 7.4, 25 °C, and 1.41 T in N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid buffer. The values were about 2.9 times higher compared to the free (unentrapped)-complex 1 molecules. The synthesized complex 1@SiO2NP interacted significantly with albumin protein and consequently boosted both the relaxivity values to r1 = 24.76 mM-1 s-1 and r2 = 63.96 mM-1 s-1 at pH = 7.4, 37 °C, and 1.41 T. The kinetic inertness of the entrapped molecules was established by recognizing no appreciable change in the r1 value upon challenging complex 1@SiO2NP with 30 and 40 times excess of Zn(II) ions at pH 6 and 25 °C. The water molecule coordinated to the Mn(II) ion in complex 1@SiO2 was also impervious to the physiologically relevant anions (bicarbonate, biphosphate, and citrate) and pH of the medium. Thus, it ensured the availability of the inner-coordination site of complex 1 for the coordination of water molecules in the biological media. The concentration-dependent changes in image intensities in T1- and T2-weighted phantom images and uptake of the nanoparticles by the HeLa cell put forward the biocompatible complex 1@SiO2NP as a potential dual-mode MRI contrast agent, an alternative to Gd(III)-containing contrast agents.


Asunto(s)
Medios de Contraste , Nanosferas , Medios de Contraste/química , Células HeLa , Humanos , Imagen por Resonancia Magnética/métodos , Manganeso/química , Porosidad , Dióxido de Silicio , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...