Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 30(22): 40854-40870, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36299011

RESUMEN

Images captured from a long distance suffer from dynamic image distortion due to turbulent flow of air cells with random temperatures, and thus refractive indices. This phenomenon, known as image dancing, is commonly characterized by its refractive-index structure constant C n2 as a measure of the turbulence strength. For many applications such as atmospheric forecast model, long-range/astronomy imaging, and aviation safety, optical communication technology, C n2 estimation is critical for accurately sensing the turbulent environment. Previous methods for C n2 estimation include estimation from meteorological data (temperature, relative humidity, wind shear, etc.) for single-point measurements, two-ended pathlength measurements from optical scintillometer for path-averaged C n2, and more recently estimating C n2 from passive video cameras for low cost and hardware complexity. In this paper, we present a comparative analysis of classical image gradient methods for C n2 estimation and modern deep learning-based methods leveraging convolutional neural networks. To enable this, we collect a dataset of video capture along with reference scintillometer measurements for ground truth, and we release this unique dataset to the scientific community. We observe that deep learning methods can achieve higher accuracy when trained on similar data, but suffer from generalization errors to other, unseen imagery as compared to classical methods. To overcome this trade-off, we present a novel physics-based network architecture that combines learned convolutional layers with a differentiable image gradient method that maintains high accuracy while being generalizable across image datasets.

2.
Ocul Surf ; 26: 283-294, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35753666

RESUMEN

PURPOSE: Develop a deep learning-based automated method to segment meibomian glands (MG) and eyelids, quantitatively analyze the MG area and MG ratio, estimate the meiboscore, and remove specular reflections from infrared images. METHODS: A total of 1600 meibography images were captured in a clinical setting. 1000 images were precisely annotated with multiple revisions by investigators and graded 6 times by meibomian gland dysfunction (MGD) experts. Two deep learning (DL) models were trained separately to segment areas of the MG and eyelid. Those segmentation were used to estimate MG ratio and meiboscores using a classification-based DL model. A generative adversarial network was implemented to remove specular reflections from original images. RESULTS: The mean ratio of MG calculated by investigator annotation and DL segmentation was consistent 26.23% vs 25.12% in the upper eyelids and 32.34% vs. 32.29% in the lower eyelids, respectively. Our DL model achieved 73.01% accuracy for meiboscore classification on validation set and 59.17% accuracy when tested on images from independent center, compared to 53.44% validation accuracy by MGD experts. The DL-based approach successfully removes reflection from the original MG images without affecting meiboscore grading. CONCLUSIONS: DL with infrared meibography provides a fully automated, fast quantitative evaluation of MG morphology (MG Segmentation, MG area, MG ratio, and meiboscore) which are sufficiently accurate for diagnosing dry eye disease. Also, the DL removes specular reflection from images to be used by ophthalmologists for distraction-free assessment.


Asunto(s)
Aprendizaje Profundo , Síndromes de Ojo Seco , Enfermedades de los Párpados , Disfunción de la Glándula de Meibomio , Oftalmólogos , Humanos , Glándulas Tarsales/diagnóstico por imagen , Síndromes de Ojo Seco/diagnóstico por imagen , Lágrimas , Enfermedades de los Párpados/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA