Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Res ; 279: 127551, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38016380

RESUMEN

Agriculture in the 21st century faces grave challenges to meet the unprecedented food demand of the burgeoning population as well as reduce the ecological footprint for achieving sustainable development goals. The extensive use of harsh synthetic surfactants in pesticides and the agrochemical industry has substantial adverse impacts on the soil and environment due to their toxic and non-biodegradable nature. Biosurfactants derived from plant, animal, and microbial sources can be an eco-friendly alternative to chemical surfactants. Microbes producing biosurfactants play a noteworthy role in biofilm formation, plant pathogen elimination, biodegradation, bioremediation, improving nutrient bioavailability, and can thrive well under stressful environments. Microbial biosurfactants are well suited for heavy metal and organic contaminants remediation in agricultural soil due to their low toxicity, high activity at fluctuating temperatures, biodegradability, and stability over a wide array of environmental conditions. This green technology will improve the agricultural soil quality by increasing the soil flushing efficiency, mobilization, and solubilization of nutrients by forming metal-biosurfactant complexes, and through the dissemination of complex nutrients. Such characteristics help it to play a pivotal role in environmental sustainability in the foreseeable future, which is required to increase the viability of biosurfactants for extensive commercial uses, making them accessible, affordable, and economically sustainable.


Asunto(s)
Agricultura , Suelo , Plantas/metabolismo , Biodegradación Ambiental , Tensoactivos/metabolismo
2.
Environ Monit Assess ; 194(4): 251, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35253101

RESUMEN

Present study is a maiden attempt to assess net ecosystem exchange (NEE) of carbon dioxide (CO2) flux from jute crop (Corchorus olitorius L.) in the Indo-Gangetic plain by using open-path eddy covariance (EC) technique. Diurnal variations of NEE were strongly influenced by growth stages of jute crop. Daytime peak NEE varied from - 5 µmol m-2 s-1 (in germination stage) to - 23 µmol m-2 s-1 (in fibre development stage). The ecosystem was net CO2 source during nighttime with an average NEE value of 5-8 µmol m-2 s-1. Combining both daytime and nighttime CO2 fluxes, jute ecosystem was found to be a net CO2 sink on a daily basis except the initial 9 days from date of sowing. Seasonal and growth stage-wise NEEs were computed, and the seasonal total NEE over the jute season was found to be - 268.5 gC m-2 (i.e. 10.3 t CO2 ha-1). In different jute growth stages, diurnal variations of NEE were strongly correlated (R2 > 0.9) with photosynthetic photon flux density (PPFD). Ecosystem level photosynthetic efficiency parameters were estimated at each growth stage of jute crop using the Michaelis-Menten equation. The maximum values of photosynthetic capacity (Pmax, 63.3 ± 1.15 µmol CO2 m-2 s-1) and apparent quantum yield (α, 0.072 ± 0.0045 µmol CO2 µmol photon-1) were observed during the active vegetative stage, and the fibre development stage, respectively. Results of the present study would significantly contribute to understanding of the carbon flux from the Indian agro-ecosystems, which otherwise are very sparse.


Asunto(s)
Corchorus , Ecosistema , Ciclo del Carbono , Dióxido de Carbono/análisis , Monitoreo del Ambiente , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...