Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 12952, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839775

RESUMEN

To date, degraded mangrove ecosystem restoration accomplished worldwide primarily aligns towards rehabilitation with monotypic plantations, while ecological restoration principles are rarely followed in these interventions. However, researchers admit that most of these initiatives' success rate is not appreciable often. An integrative framework of ecological restoration for degraded mangroves where site-specific observations could be scientifically rationalized, with co-located reference pristine mangroves as the target ecosystem to achieve is currently distinctively lacking. Through this experimental scale study, we studied the suitability of site-specific strategies to ecologically restore degraded mangrove patches vis-à-vis the conventional mono-species plantations in a highly vulnerable mangrove ecosystem in Indian Sundarbans. This comprehensive restoration framework was trialed in small discrete degraded mangrove patches spanning ~ 65 ha. Site-specific key restoration components applied are statistically validated through RDA analyses and Bayesian t-tests. 25 quantifiable metrics evaluate the restoration success of a ~ 3 ha degraded mangrove patch with Ridgeline distribution, Kolmogorov-Smirnov (K-S) tests, and Mahalanobis Distance (D2) measure to prove the site's near-equivalence to pristine reference in multiple ecosystem attributes. This restoration intervention irrevocably establishes the greater potential of this framework in the recovery of ecosystem functions and self-sustenance compared to that of predominant monoculture practices for vulnerable mangroves.


Asunto(s)
Conservación de los Recursos Naturales , Humedales , India , Conservación de los Recursos Naturales/métodos , Ecosistema , Restauración y Remediación Ambiental/métodos , Proyectos Piloto , Teorema de Bayes
2.
Front Microbiol ; 15: 1324188, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38873137

RESUMEN

Introduction: Biological nitrogen fixation (BNF), an unparalleled metabolic novelty among living microorganisms on earth, globally contributes ~88-101 Tg N year-1 to natural ecosystems, ~56% sourced from symbiotic BNF while ~22-45% derived from free-living nitrogen fixers (FLNF). The success of symbiotic BNF is largely dependent on its interaction with host-plant, however ubiquitous environmental heterotrophic FLNFs face many limitations in their immediate ecological niches to sustain unhindered BNF. The autotrophic FLNFs like cyanobacteria and oceanic heterotrophic diazotrophs have been well studied about their contrivances acclimated/adapted by these organisms to outwit the environmental constraints for functional diazotrophy. However, FLNF heterotrophs face more adversity in executing BNF under stressful estuarine/marine/aquatic habitats. Methods: In this study a large-scale cultivation-dependent investigation was accomplished with 190 NCBI accessioned and 45 non-accessioned heterotrophic FLNF cultivable bacterial isolates (total 235) from halophilic estuarine intertidal mangrove niches of Indian Sundarbans, a Ramsar site and UNESCO proclaimed World Heritage Site. Assuming ~1% culturability of the microbial community, the respective niches were also studied for representing actual bacterial diversity via cultivation-independent next-generation sequencing of V3-V4 rRNA regions. Results: Both the studies revealed a higher abundance of culturable Gammaproteobacteria followed by Firmicutes, the majority of 235 FLNFs studied belonging to these two classes. The FLNFs displayed comparable selection potential in media for free nitrogen fixers and iron-oxidizing bacteria, linking diazotrophy with iron oxidation, siderophore production, phosphorus solubilization, phosphorus uptake and accumulation as well as denitrification. Discussion: This observation validated the hypothesis that under extreme estuarine mangrove niches, diazotrophs are naturally selected as a specialized multidimensional entity, to expedite BNF and survive. Earlier metagenome data from mangrove niches demonstrated a microbial metabolic coupling among C, N, P, S, and Fe cycling in mangrove sediments, as an adaptive trait, evident with the co-abundant respective functional genes, which corroborates our findings in cultivation mode for multiple interrelated metabolic potential facilitating BNF in a challenging intertidal mangrove environment.

3.
Soft Matter ; 20(11): 2568-2574, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38411472

RESUMEN

Supramolecular gels have an extensive range of potential applications, out of which stimuli-responsive materials are a topic of contemporary research. Gels being kinetically entrapped materials can be tuned to different forms using external chemical stimuli. In this context, three different triazine gelators, each containing a unique end group, were examined for gelation in various solvent systems. Nevertheless, the gelation was limited to only alcoholic solvents, suggesting that the hydrogen bonds between the gelating solvent and gelator play a crucial role in gelation. Further, it was found that these gelators could gelate only with aliphatic alcohols, which could be degelled easily using aromatic alcohols. The three gelators exhibited distinct gelation of aliphatic alcohols based on their end groups. The gelator with the polar-aromatic end group (C5H4N) was found to gelate with lighter alcohols, whereas that with the nonpolar aromatic end group (C6H5) was found to prefer higher alcohols. The MGC and Tgel values were also found to depend on the alkyl chain length/branching of the alcohols. The crystal structure of one of the gelators provides insights into the model structure of the gels. Cyclohexanol was the only solvent that could produce gels with all three of the as-synthesised gelators. The process of degelation by aromatic alcohols was monitored at different points of the disassembly process by rheological and morphological measurements to understand the extent of controlled degelation. These gels have great potential for use in controlled drug delivery and chemical sensing, among other areas.

4.
Pestic Biochem Physiol ; 198: 105738, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225085

RESUMEN

This study aimed to evaluate the effects of propiconazole on the tubificid segmented worm, Tubifex tubifex. The animals were exposed to various concentrations of propiconazole for 96 h to assess the acute effect of this fungicide and for subacute level animals were exposed for 14 days with 10% and 20% of the 96 h LC50 value (0.211 and 0.422 mg/l, respectively). The 96 h LC50 value was determined to be 2.110 mg/l, and sublethal propiconazole concentrations caused significant changes in the oxidative stress enzymes. When compared to control organisms, superoxide dismutase (SOD) and catalase (CAT) activity first decreases and then significantly increases on days 7 and 14. However, GST activity decreases and MDA concentration rises in a concentration- and time-dependent manner throughout the exposure period. In addition, the impacts of propiconazole on Tubifex tubifex were characterized and depicted using a correlation matrix and an integrated biomarker response (IBR) assessment. These findings suggest that exposure to this fungicide distorts the survivability and behavioral response in Tubifex tubifex at the acute level. In addition, it modulates changes in oxidative stress enzymes at the sublethal level. Furthermore, the species sensitivity distribution curve indicates that this tubificid worm has a high risk of survival in the presence of the fungicide propiconazole in aquatic ecosystems.


Asunto(s)
Fungicidas Industriales , Triazoles , Contaminantes Químicos del Agua , Animales , Antioxidantes/farmacología , Fungicidas Industriales/toxicidad , Aguas del Alcantarillado , Ecosistema , Estrés Oxidativo , Contaminantes Químicos del Agua/farmacología
5.
Anal Methods ; 16(7): 1058-1068, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38270504

RESUMEN

An AIE-active pyrene-terpyridine derivative, (4'-(pyren-1-yl)-2,2':6',2''-terpyridine) (1) was found to form nanoaggregate in an aqueous medium. The probe involved hydrogen bonding with solvent molecules that modulated the charge transfer behavior and consequently resulted in different spectroscopic behavior due to the formation of fluorescent organic nanoparticles (FONs). In the presence of Cu2+ ions, FONs displayed a ratiometric red shift of the absorption band (360 to 420 nm) accompanied by a prominent naked-eye color change from colorless to light yellow. With a gradual increase in water content, 1 displayed a huge red shift of the emission band (430 to 475 nm) denoting its switching from monomer to FONs. In the presence of Cu2+, the 475 nm emission band of FONs gradually diminished, facilitating the micromolar scale detection of Cu2+ (LOD = 8.57 µM) in a 100% aqueous medium with a fluorogenic color change from cyan to dark. The SEM and DLS data indicated the cation-induced disaggregation of FONs, which was further confirmed by mass spectral analysis and electron paramagnetic resonance measurement. In addition, the high selectivity of FONs towards Cu2+ ions over other potential cations and the 2 : 1 (1-Cu2+) binding stoichiometry were also determined. Moreover, the spectroscopic behavior of the monomeric amphiphilic probe was well supported by extensive DFT study. Such detection of Cu2+ ions in pure aqueous medium denoting an aggregation-disaggregation event is very rare in the literature.

6.
BMJ Case Rep ; 16(8)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37607765

RESUMEN

Total hip arthroplasty (THA) in patients with ipsilateral mid-thigh amputation is surgically challenging. We report a case of same setting THA and ipsilateral above-knee amputation in a male patient. The patient had 8 months old neglected neck femur fracture and ipsilateral femur shaft fracture with 14 cm bone loss. There was an associated neurovascular (femoral artery injury and sciatic nerve palsy) deficit at the initial insult; however, the limb survived because of well-formed collaterals. The limb was insensate at the time of presentation because of complete sciatic nerve palsy. The decision to undergo amputation was taken based on insensate limb, compromised circulation and huge bone loss with healed open fracture. After 10 months follow-up, the patient was walking with prosthesis limb fitted to the amputated mid-thigh stump and there were no incidences of osteolysis, subsidence or infection in the THA site.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Enfermedades Óseas Metabólicas , Fracturas del Fémur , Fracturas del Cuello Femoral , Humanos , Masculino , Lactante , Fracturas del Fémur/cirugía , Muslo , Extremidad Inferior , Amputación Quirúrgica , Fracturas del Cuello Femoral/cirugía
7.
Chem Asian J ; 18(9): e202300090, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36920733

RESUMEN

Catalysis plays a crucial role in all the major applications and challenges in the environment, including energy generation and environmental remediation. Although photocatalysts and electrocatalysts are useful in addressing energy and environmental issues, they have some major drawbacks, such as low efficiency and easy charge recombination which limits their applications. Hence, it is imperative to design and explore new catalytic techniques that include non-photoresponsive catalysts. In this review, the detailed possibilities, characteristics and prospects of non-photoresponsive catalysts, such as piezocatalysts, thermocatalysts, pyrocatalysts, and tribocatalysts along with hybrid catalysts are described. The overall mechanism of each catalytic technique and its applications in different fields such as energy generation, environmental remediation, and carbon dioxide reduction are discussed.

8.
Front Plant Sci ; 14: 1291805, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38293624

RESUMEN

Bibenzyl derivatives comprising two benzene rings are secondary plant metabolites with significant therapeutic value. To date, bibenzyl derivatives in the Plant kingdom have been primarily identified in bryophytes, orchids, and Cannabis sativa. The metabolic cost investment by plant species for the synthesis of these bioactive secondary metabolites is rationalized as a mechanism of plant defense in response to oxidative stress induced by biotic/abiotic factors. Bibenzyl derivatives are synthesized from core phenylpropanoid biosynthetic pathway offshoots in plant species. Mangrove and mangrove associate species thrive under extreme ecological niches such as a hypersaline intertidal environment through unique adaptive and acclimative characteristics, primarily involving osmotic adjustments followed by oxidative stress abatement. Several primary/secondary bioactive metabolites in mangrove species have been identified as components of salinity stress adaptation/acclimation/mitigation; however, the existence of a bibenzyl scaffold in mangrove species functioning in this context remains unknown. We here report the confirmed detection of a core bibenzyl scaffold from extensive gas chromatography-mass spectrometry and gas chromatography-flame ionization detection analyses of 28 mangrove and mangrove associate species from the Indian Sundarbans. We speculate that the common presence of this bibenzyl core molecule in 28 mangrove and associate species may be related to its synthesis via branches of the phenylpropanoid biosynthetic pathway induced under high salinity, which functions to detoxify reactive oxygen species as a protection for the maintenance of plant metabolic processes. This finding reveals a new eco-physiological functional role of bibenzyls in unique mangrove ecosystem.

9.
Chemistry ; 28(9): e202103830, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-34936721

RESUMEN

Selective detection of H2 S in the cellular systems using fluorescent CPs/MOFs is of great scientific interest due to their outstanding aqueous stability, biocompatibility and real-time detection ability. Fabrication of such materials using complete biologically essential elements and applying them as an efficient biosensor is still quite challenging. In this context, two newly synthesized CPs containing biologically essential metal ion (Zn) and nitro/azido functional groups into the framework to sense extracellular and intracellular H2 S by reducing into respective amines are presented. The CP-1 containing the azide group acted as an efficient fluorescent turn-on probe with the lowest detection limit (7.2 µM) and shortest response time (30 s) among the Zn-based probes reported till date. Moreover, CP-1 exhibited green luminescence in live cells after imaging a very low concentration of H2 S, whereas the nitro analogue CP-2 could not detect the target analyte due to its framework disruption.


Asunto(s)
Colorantes Fluorescentes , Polímeros , Azidas , Luminiscencia , Zinc
10.
Dalton Trans ; 50(31): 10655-10673, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34286769

RESUMEN

Recent studies on proton conductivity using pristine MOFs and their composite materials have established an outstanding area of research owing to their potential applications for the development of high performance solid state proton conductors (SSPCs) and proton exchange membranes (PEMs) in fuel cells (FCs). MOFs, as crystalline organic and inorganic hybrid materials, provide a large number of degrees of freedom in their framework composition, coordination environment, and chemically functionalized pores for the targeted design of improved proton carriers, functioning over a wide range of temperature and humidity conditions. Herein, our efforts have been emphasized on fundamental principles and different design strategies to achieve enhanced proton conductivity with appropriate examples. We also have discussed the modification mechanism of MOF-composite materials and mixed matrix membranes for commercial applications in FCs. Thus, this review aims to direct readers' attention towards the design strategies and structure-property relationship for proton transport in MOFs.

11.
Nat Commun ; 12(1): 180, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420069

RESUMEN

The highly reactive nature of reactive oxygen species (ROS) is the basis for widespread use in environmental and health-related fields. Conventionally, there are only two kinds of catalysts used for ROS generation: photocatalysts and piezocatalysts. However, their usage has been limited due to various environmental and physical factors. To address this problem, herein, we report thermoelectric materials, such as Bi2Te3, Sb2Te3, and PbTe, as thermocatalysts which can produce hydrogen peroxide (H2O2) under a small surrounding temperature difference. Being the most prevalent environmental factors in daily life, temperature and related thermal effects have tremendous potential for practical applications. To increase the practicality in everyday life, bismuth telluride nanoplates (Bi2Te3 NPs), serving as an efficient thermocatalyst, are coated on a carbon fiber fabric (Bi2Te3@CFF) to develop a thermocatalytic filter with antibacterial function. Temperature difference induced H2O2 generation by thermocatalysts results in the oxidative damage of bacteria, which makes thermocatalysts highly promising for disinfection applications. Antibacterial activity as high as 95% is achieved only by the treatment of low-temperature difference cycles. The current work highlights the horizon-shifting impacts of thermoelectric materials for real-time purification and antibacterial applications.


Asunto(s)
Antibacterianos/farmacología , Bismuto/farmacología , Desinfección/métodos , Peróxido de Hidrógeno/farmacología , Nanotecnología/métodos , Telurio/farmacología , Filtros de Aire , Antibacterianos/química , Bacterias/efectos de los fármacos , Bismuto/química , Restauración y Remediación Ambiental , Escherichia coli/efectos de los fármacos , Peróxido de Hidrógeno/química , Nanopartículas/química , Tamaño de la Partícula , Especies Reactivas de Oxígeno , Telurio/química , Temperatura , Textiles , Difracción de Rayos X
12.
Chem Commun (Camb) ; 56(95): 15032-15035, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33188668

RESUMEN

A Lewis acid catalyzed annulation reaction via arene functionalization of nitrosoarenes and C-C cleavage of (epoxy)styrene to provide arylquinolines is reported. The Lewis acid catalyst altered the annulation pattern providing arylquinolines instead of oxazolidines. The reaction with styrene resulted in a mixture of 2,4-diarylquinoline and 4-arylquinoline, while only 3-arylquinoline was formed from the reaction of epoxystyrene.

13.
ACS Appl Mater Interfaces ; 12(43): 48363-48370, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33049141

RESUMEN

Although the piezoelectric property of a BaTiO3 nanoparticle is routinely used in energy harvesting application, it can also be exploited for wireless cell stimulation and cell therapy. However, such biomedical application is rare due to limited availability of colloidal BaTiO3 nanoparticles of <100 nm hydrodynamic size with good piezocatalytic property and efficient biolabeling performance. Here, we report a colloidal form of a piezocatalytic BaTiO3-based nanorod of <100 nm hydrodynamic size that can offer wireless cell stimulation. The nanorod is prepared using a TiO2 nanorod as the template, and the resultant TiO2-BaTiO3-based composite nanorod is coated with a hydrophilic polymer shell. These nanorods can label cells and, under the ultrasound exposure, produce reactive oxygen species inside cells via piezocatalysis, leading to cell death. These nanorods can be used for wireless modulation of intracellular processes.


Asunto(s)
Compuestos de Bario/química , Nanotubos/química , Titanio/química , Catálisis , Muerte Celular , Células HeLa , Humanos , Hidrodinámica , Estrés Oxidativo , Tamaño de la Partícula , Polímeros/química , Especies Reactivas de Oxígeno/metabolismo , Propiedades de Superficie , Ultrasonido
14.
Nanoscale ; 12(34): 17663-17697, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32821897

RESUMEN

The abundance of water on earth provides a large window to utilize the mechanical energy within river currents and ocean waves. In this regard, hydropower harvesting through solid-liquid contact electrification has received considerable interest in the recent past. Despite advancements in nanotechnology, liquid energy harvesting devices, especially solid-liquid triboelectric nanogenerators (S-L TENGs), require efficient engineering of the interfacial properties of their substrates to transfer liquid mass and momentum rapidly with the effective generation/transfer of surface charges. To face this challenge, several parameters such as the selection of material, surface morphology and surface properties are currently being studied to develop a better system architecture for energy harvesting and self-powered application platforms with three different interacting modes of liquid contact. Moreover, several parameters of the contact solvents such as the ionic activity and polarity have been studied to understand the practical applicability of S-L TENGs to harvest energy from different natural and artificial resources. In addition, the scope of harvesting mechanical energy from other volatile organic compounds has been studied recently. Self-powered applications of S-L TENGs in various fields have also been demonstrated by different research groups. This work reviews recent progress in the development of S-L TENGs for the first time in terms of the different properties of solid and liquid contact materials along with their respective applications. Furthermore, the work concludes with perspectives, future opportunities, and major challenges of fabricating S-L TENGs as an efficient energy harvester.

15.
Org Lett ; 22(12): 4883-4887, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32519864

RESUMEN

A three-component annulation reaction of N-alkyl anilines, cyclic 1,3-dicarbonyl compounds, and aryl aldehydes to julolidines and lilolidines is reported. The 6π-electrocyclization enabled the annulation to proceed with reversed regioselectivity as compared with the annulation that occurs in the Povarov reaction. Both cyclic and acyclic N-alkyl anilines participated in the reaction to provide a wide range of julolidines and lilolidines as the single regio- and diastereoisomers in good to excellent yields.

16.
J Food Drug Anal ; 28(4): 595-621, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35696148

RESUMEN

Digital microfluidic (DMF) platforms have contributed immensely to the development of multifunctional lab-on-chip systems for performing complete sets of biological and analytical assays. Electrowetting-on-dielectric (EWOD) technology, due to its outstanding flexibility and integrability, has emerged as a promising candidate for such lab-on-chip applications. Triggered by an electrical stimulus, EWOD devices allow precise manipulation of single droplets along the designed electrode arrays without employing external pumps and valves, thereby enhancing the miniaturization and portability of the system towards transcending important laboratory assays in resource-limited settings. In recent years, the simple fabrication process and reprogrammable architecture of EWOD chips have led to their widespread applications in food safety analysis. Various EWOD devices have been developed for the quantitative monitoring of analytes such as food-borne pathogens, heavy metal ions, vitamins, and antioxidants, which are significant in food samples. In this paper, we reviewed the advances and developments in the design of EWOD systems for performing versatile functions starting from sample preparation to sample detection, enabling rapid and high-throughput food analysis.

17.
Microsc Microanal ; 25(6): 1466-1470, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31556362

RESUMEN

In this work, strongly blue emitting Ce3+-activated BaAl2O4 nanophosphors were successfully synthesized by a sol-gel technique. The crystal structure, morphology, and microstructure of the nanophosphors have been studied by X-ray powder diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy. The photoluminescence spectra show the impact of concentration variation of Ce3+ on the photoluminescence emission of the phosphor. These nanophosphors display intense blue emission peaking at 422 nm generated by the Ce3+ 5d → 4f transition under 350 nm excitation. Our results reveal that this nanophosphor has the capability to take part in the emergent domain of solid-state lighting and field-emission display devices.

18.
Microsc Microanal ; 25(6): 1422-1430, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31025617

RESUMEN

In recent years, nanoscale phosphors have become vital in optoelectronic applications and to understand the improved performance of nanophosphors over bulk material, detailed investigation is essential. Herein, trivalent europium-activated Y4Al2O9 phosphors were developed by solid-state reaction and solvothermal reaction methods and their performance as a function of their dimension was studied for various applications. Under 394 nm optical excitation, the photoluminescence (PL) emission, excited state lifetime of the nanophosphor, exhibits greater performance than its bulk counterpart. The homogeneous spherical structure of the nanophosphors as compared with solid lumps of bulk phosphors is the basis for almost 40% of the enhancement in nanophosphors' intense red emission compared to the bulk. Moreover, the thermal stability of the nanophosphor is much better than the bulk phosphor, which clearly indicates a key advantage of nanophosphor. The superior performance of Eu3+-doped Y4Al2O9 nanophosphors over their bulk counterparts has been demonstrated for industrial phosphor-converted light-emitting diodes and visualization of latent fingerprint.

19.
Nanoscale ; 10(35): 16822-16829, 2018 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-30167606

RESUMEN

Graphene-based van der Waals (vdW) heterostructures can facilitate exciting charge transfer dynamics in between structural layers with the emission of excitonic quasi-particles. However, the chemical formation of such heterostructures has been elusive thus far. In this work, a simple chemical approach is described to form such van der Waals (vdW) heterostructures using few layer MoS2 sheet embedded quantum dots (QDs) and amine-functionalized graphene quantum dots (GQDs) to probe the energy transfer mechanism for tunable photoluminescence (PL). Our findings reveal an interesting non-radiative Förster-type energy transfer with the quenching of functional GQD PL intensity after GQD/MoS2 composite formation, which validates the existing charge transfer dynamics analogous to 0D and 2D systems. The non-radiative type of energy transfer characteristic from GQD into the MoS2 layer through vdW interactions has been confirmed by photoluminescence, time decay analyses and ab initio calculations with the shifting of the Fermi level in the density of states towards the conduction band in the stacked configuration. These results are encouraging for the fundamental exploration of optical properties in other chemically prepared QD/2D based heterostructures to understand the charge transfer mechanism and fingerprint luminescence quenching for future optoelectronic device and optical sensing applications.

20.
Dalton Trans ; 47(35): 12228-12242, 2018 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-30106407

RESUMEN

Feeble white emission with a low Colour Rendering Index (CRI) has become the principal gridlock for the extensive commercialization of phosphor converted white LEDs (pc-WLEDs). Fusion of red, green and blue emitting rare-earth (RE) ions in a suitable host can overcome these drawbacks but the energy migration between multiple RE ions at single excitation wavelength defines the key standpoint in designing such white light emitting phosphors. Apart from the abovementioned obstacles, recently traditional optical temperature sensors based on RE ions have faced difficulties due to their low relative sensitivity and large detection error. Keeping these points in mind, in this work, a series of MgAl2O4:Dy3+,Eu3+ nanophosphors are synthesized among which 2% Dy3+,0.2% Eu3+ doped MgAl2O4 nanophosphors demonstrate strong white emission with CIE co-ordinates of (0.31, 0.33), and high quantum yield (∼67%), which could be directly utilized for pc-WLED based solid state lighting devices. Detailed investigation of PL properties reveals that Eu3+ ions can be well sensitized by Dy3+ under near-ultraviolet excitation of 351 nm. Dexter's theory & Reisfeld's approximation are employed for an in-depth analysis of the inter-RE energy transfer (ET) mechanism, which signposts that the dipole-quadrupole interaction phenomenon is responsible for the ET process from Dy3+ to Eu3+. Additionally, the validated ET plays a pivotal role in demonstrating the self-referencing ratiometric temperature sensor behaviour supported by a distinct high temperature thermal quenching trend between Dy3+ and Eu3+ ions. Hence the obtained nanophosphors are highly promising for utilizing in WLED based solid state lighting and self-referencing ratiometric temperature sensor applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...