Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 353: 141504, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403120

RESUMEN

The selective removal of pollutants from water bodies is regarded as a conciliation between the rapid expansion of industrial activities and need of clean water for sustainability. Fluoride is one such geogenic pollutant, and various materials have already been reported. Developing an efficient field employable material is however a challenge. Herein, we report the synthesis and competencies of strategically designed magnetic La-doped Al2O3 core-shell nanoparticle loaded polymeric nanohybrid as a benchmark fluoride sorbent. A facile synthesis strategy involved fabrication of Fe3O4 magnetic core followed by growth of La doped Al2O3 shell using sol-gel method. Doping of La2O3 into Al2O3 structure was optimised (6%), resulting in Fe3O4-Al0.94 La0.06O1.5 core-shell particles which provided exceptional fluoride affinity. The obtained magnetic Fe3O4-Al0.94La0.06O1.5 core-shell nanoparticles were then loaded (22%) into alginate to form cross-linked hydrogel beads (Fe3O4-Al0.94 La0.06 O1.5-Ca-ALG). These prepared hydrogel beads were characterised and utilized for selective recovery of fluoride under different ambient conditions. Driving forces for enhanced fluoride uptake by La doped Al2O3 were investigated and explained with the help of both experimental observation and theoretical simulation. Density functional theory calculations indicated significant expansion in the cell volume of Al2O3 due to La doping which favoured the fluoride sorption. The calculated defect formation energy for the incorporation of F into Al2O3 was found to decrease in the presence of La. XPS analysis suggested direct interaction of fluoride with Al, forming Al-F bond and breaking Al-O bond. Different vital parameters for uptake were optimised. Also, kinetics, isotherm and diffusion models were evaluated. Developed hydrogel beads attained record sorption capacity of 132.3 mgg-1 for fluoride. Overall, excellent stability, no leaching of constituents, effectiveness for selective fluoride recovery from groundwater, brand it a perfect epitome of sustainable water treatment application.


Asunto(s)
Fluoruros , Nanopartículas , Hidrogeles/química , Adsorción , Fenómenos Magnéticos , Cinética
2.
Artículo en Inglés | MEDLINE | ID: mdl-37779125

RESUMEN

Accelerated release of carbon dioxide (CO2) into the atmosphere has become a critical environmental issue, and therefore, efficient methods for capturing CO2 are in high demand. Graphene and graphene-based derivatives have demonstrated promising potential as adsorbents due to their unique properties. This review aims to provide an overview of the latest research on graphene and its derivatives fabricated from natural sources which have been utilized and may be explored for CO2 adsorption. The necessity of this review lies in the need to explore alternative, sustainable sources of graphene that can contribute to the development of viable environmentally benign CO2 capture technologies. The review will aim to highlight graphene as an excellent CO2 adsorbent and the possible avenues, advantages, and limitations of the processes involved in fabricating graphene and its derivatives sourced from both industrial resources and organic waste-based naturally occurring carbon precursors for CO2 adsorption. This review will also highlight the CO2 adsorption mechanisms focusing on density functional theory (DFT) and molecular dynamics (MD)-based studies over the last decade.

3.
J Infect Dis ; 228(11): 1610-1620, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37722688

RESUMEN

Bacterial vaginosis (BV) is a dysbiotic condition of the vaginal microbiome associated with higher risk of infection by Neisseria gonorrhoeae-the cause of gonorrhea. Here we test if one known facet of BV-the presence of bacterial cytolysins-leads to mobilization of intracellular contents that enhance gonococcal virulence. We cloned and expressed recombinant vaginolysin (VLY), a cytolysin produced by the BV-associated bacterium Gardnerella, verifying that it liberates contents of cervical epithelial (HeLa) cells, while vector control preparations did not. We tested if VLY mediates a well-known gonococcal virulence mechanism-the molecular mimicry of host glycans. To evade host immunity, N. gonorrhoeae caps its lipooligosaccharide (LOS) with α2-3-linked sialic acid. For this, gonococci must scavenge a metabolite made inside host cells. Flow cytometry-based lectin-binding assays showed that gonococci exposed to vaginolysin-liberated contents of HeLa cells displayed greater sialic acid capping of their LOS. This higher level of bacterial sialylation was accompanied by increased binding of the complement regulatory protein factor H, and greater resistance to complement attack. Together these results suggest that cytolytic activities present during BV may enhance the ability of N. gonorrhoeae to capture intracellular metabolites and evade host immunity via glycan molecular mimicry.


Asunto(s)
Gonorrea , Vaginosis Bacteriana , Femenino , Humanos , Neisseria gonorrhoeae , Gardnerella/metabolismo , Células HeLa , Ácido N-Acetilneuramínico/metabolismo , Imitación Molecular , Proteínas Bacterianas/genética , Vaginosis Bacteriana/microbiología , Bacterias , Gonorrea/microbiología , Factor H de Complemento
4.
Mol Biol Evol ; 39(8)2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35809046

RESUMEN

The myelomonocytic receptor CD33 (Siglec-3) inhibits innate immune reactivity by extracellular V-set domain recognition of sialic acid (Sia)-containing "self-associated molecular patterns" (SAMPs). We earlier showed that V-set domain-deficient CD33-variant allele, protective against late-onset Alzheimer's Disease (LOAD), is derived and specific to the hominin lineage. We now report multiple hominin-specific CD33 V-set domain mutations. Due to hominin-specific, fixed loss-of-function mutation in the CMAH gene, humans lack N-glycolylneuraminic acid (Neu5Gc), the preferred Sia-ligand of ancestral CD33. Mutational analysis and molecular dynamics (MD)-simulations indicate that fixed change in amino acid 21 of hominin V-set domain and conformational changes related to His45 corrected for Neu5Gc-loss by switching to N-acetylneuraminic acid (Neu5Ac)-recognition. We show that human-specific pathogens Neisseria gonorrhoeae and Group B Streptococcus selectively bind human CD33 (huCD33) as part of immune-evasive molecular mimicry of host SAMPs and that this binding is significantly impacted by amino acid 21 modification. In addition to LOAD-protective CD33 alleles, humans harbor derived, population-universal, cognition-protective variants at several other loci. Interestingly, 11 of 13 SNPs in these human genes (including CD33) are not shared by genomes of archaic hominins: Neanderthals and Denisovans. We present a plausible evolutionary scenario to compile, correlate, and comprehend existing knowledge about huCD33-evolution and suggest that grandmothering emerged in humans.


Asunto(s)
Abuelos , Hominidae , Alelos , Aminoácidos , Animales , Cognición , Hominidae/genética , Humanos
5.
J Vis Exp ; (183)2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35695538

RESUMEN

The mammalian vagina can be colonized by many bacterial taxa. The human vaginal microbiome is often dominated by Lactobacillus species, but one-in-four women experience bacterial vaginosis, in which a low level of lactobacilli is accompanied by an overgrowth of diverse anaerobic bacteria. This condition has been associated with many health complications, including risks to reproductive and sexual health. While there is growing evidence showing the complex nature of microbial interactions in human vaginal health, the individual roles of these different anaerobic bacteria are not fully understood. This is complicated by the lack of adequate models to study anaerobically grown vaginal bacteria. Mouse models allow us to investigate the biology and virulence of these organisms in vivo. Other mouse models of vaginal bacterial inoculation have previously been described. Here, we describe methods for the inoculation of anaerobically grown bacteria and their viable recovery in conventionally raised C57Bl/6 mice. A new, less stressful procedural method for vaginal inoculation and washing is also described. Inoculation and viable recovery of Gardnerella are outlined in detail, and strategies for additional anaerobes such as Prevotella bivia and Fusobacterium nucleatum are discussed.


Asunto(s)
Microbiota , Vaginosis Bacteriana , Animales , Bacterias , Bacterias Anaerobias , Femenino , Humanos , Lactobacillus , Mamíferos , Ratones , Vagina/microbiología , Vaginosis Bacteriana/microbiología
6.
Front Cell Infect Microbiol ; 12: 882166, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573773

RESUMEN

The Apicomplexa are famously named for their apical complex, a constellation of organelles at their apical end dedicated to invasion of their host cells. In contrast, at the other end of the cell, the basal complex (BC) has been overshadowed since it is much less prominent and specific functions were not immediately obvious. However, in the past decade a staggering array of functions have been associated with the BC and strides have been made in understanding its structure. Here, these collective insights are supplemented with new data to provide an overview of the understanding of the BC in Toxoplasma gondii. The emerging picture is that the BC is a dynamic and multifunctional complex, with a series of (putative) functions. The BC has multiple roles in cell division: it is the site where building blocks are added to the cytoskeleton scaffold; it exerts a two-step stretch and constriction mechanism as contractile ring; and it is key in organelle division. Furthermore, the BC has numerous putative roles in 'import', such as the recycling of mother cell remnants, the acquisition of host-derived vesicles, possibly the uptake of lipids derived from the extracellular medium, and the endocytosis of micronemal proteins. The latter process ties the BC to motility, whereas an additional role in motility is conferred by Myosin C. Furthermore, the BC acts on the assembly and/or function of the intravacuolar network, which may directly or indirectly contribute to the establishment of chronic tissue cysts. Here we provide experimental support for molecules acting in several of these processes and identify several new BC proteins critical to maintaining the cytoplasmic bridge between divided parasites. However, the dispensable nature of many BC components leaves many questions unanswered regarding its function. In conclusion, the BC in T. gondii is a dynamic and multifunctional structure at the posterior end of the parasite.


Asunto(s)
Toxoplasma , División Celular , Citoesqueleto/metabolismo , Orgánulos/metabolismo , Proteínas Protozoarias/genética , Toxoplasma/metabolismo
7.
mBio ; 12(1)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468699

RESUMEN

Surface expression of the common vertebrate sialic acid (Sia) N-acetylneuraminic acid (Neu5Ac) by commensal and pathogenic microbes appears structurally to represent "molecular mimicry" of host sialoglycans, facilitating multiple mechanisms of host immune evasion. In contrast, ketodeoxynonulosonic acid (Kdn) is a more ancestral Sia also present in prokaryotic glycoconjugates that are structurally quite distinct from vertebrate sialoglycans. We detected human antibodies against Kdn-terminated glycans, and sialoglycan microarray studies found these anti-Kdn antibodies to be directed against Kdn-sialoglycans structurally similar to those on human cell surface Neu5Ac-sialoglycans. Anti-Kdn-glycan antibodies appear during infancy in a pattern similar to those generated following incorporation of the nonhuman Sia N-glycolylneuraminic acid (Neu5Gc) onto the surface of nontypeable Haemophilus influenzae (NTHi), a human commensal and opportunistic pathogen. NTHi grown in the presence of free Kdn took up and incorporated the Sia into its lipooligosaccharide (LOS). Surface display of the Kdn within NTHi LOS blunted several virulence attributes of the pathogen, including Neu5Ac-mediated resistance to complement and whole blood killing, complement C3 deposition, IgM binding, and engagement of Siglec-9. Upper airway administration of Kdn reduced NTHi infection in human-like Cmah null (Neu5Gc-deficient) mice that express a Neu5Ac-rich sialome. We propose a mechanism for the induction of anti-Kdn antibodies in humans, suggesting that Kdn could be a natural and/or therapeutic "Trojan horse" that impairs colonization and virulence phenotypes of free Neu5Ac-assimilating human pathogens.IMPORTANCE All cells in vertebrates are coated with a dense array of glycans often capped with sugars called sialic acids. Sialic acids have many functions, including serving as a signal for recognition of "self" cells by the immune system, thereby guiding an appropriate immune response against foreign "nonself" and/or damaged cells. Several pathogenic bacteria have evolved mechanisms to cloak themselves with sialic acids and evade immune responses. Here we explore a type of sialic acid called "Kdn" (ketodeoxynonulosonic acid) that has not received much attention in the past and compare and contrast how it interacts with the immune system. Our results show potential for the use of Kdn as a natural intervention against pathogenic bacteria that take up and coat themselves with external sialic acid from the environment.


Asunto(s)
Antígenos CD/inmunología , Infecciones por Haemophilus/inmunología , Haemophilus influenzae/inmunología , Interacciones Huésped-Patógeno/inmunología , Ácido N-Acetilneuramínico/química , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/inmunología , Ácidos Siálicos/inmunología , Animales , Anticuerpos/química , Anticuerpos/metabolismo , Antígenos CD/metabolismo , Transporte Biológico , Complemento C3/inmunología , Complemento C3/metabolismo , Femenino , Glicoconjugados/química , Glicoconjugados/inmunología , Infecciones por Haemophilus/genética , Infecciones por Haemophilus/microbiología , Haemophilus influenzae/química , Interacciones Huésped-Patógeno/genética , Humanos , Inmunoglobulina M/inmunología , Inmunoglobulina M/metabolismo , Ratones , Ratones Endogámicos C57BL , Imitación Molecular/genética , Imitación Molecular/inmunología , Ácido N-Acetilneuramínico/inmunología , Unión Proteica , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Ácidos Siálicos/química , Azúcares Ácidos/química , Azúcares Ácidos/inmunología
8.
J Clin Invest ; 131(5)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33373330

RESUMEN

Human metabolic incorporation of nonhuman sialic acid (Sia) N-glycolylneuraminic acid into endogenous glycans generates inflammation via preexisting antibodies, which likely contributes to red meat-induced atherosclerosis acceleration. Exploring whether this mechanism affects atherosclerosis in end-stage renal disease (ESRD), we instead found serum accumulation of 2-keto-3-deoxy-d-glycero-d-galacto-2-nonulosonic acid (Kdn), a Sia prominently expressed in cold-blooded vertebrates. In patients with ESRD, levels of the Kdn precursor mannose also increased, but within a normal range. Mannose ingestion by healthy volunteers raised the levels of urinary mannose and Kdn. Kdn production pathways remained conserved in mammals but were diminished by an M42T substitution in a key biosynthetic enzyme, N-acetylneuraminate synthase. Remarkably, reversion to the ancestral methionine then occurred independently in 2 lineages, including humans. However, mammalian glycan databases contain no Kdn-glycans. We hypothesize that the potential toxicity of excess mannose in mammals is partly buffered by conversion to free Kdn. Thus, mammals probably conserve Kdn biosynthesis and modulate it in a lineage-specific manner, not for glycosylation, but to control physiological mannose intermediates and metabolites. However, human cells can be forced to express Kdn-glycans via genetic mutations enhancing Kdn utilization, or by transfection with fish enzymes producing cytidine monophosphate-Kdn (CMP-Kdn). Antibodies against Kdn-glycans occur in pooled human immunoglobulins. Pathological conditions that elevate Kdn levels could therefore result in antibody-mediated inflammatory pathologies.


Asunto(s)
Aterosclerosis/metabolismo , Fallo Renal Crónico/metabolismo , Ácido N-Acetilneuramínico/biosíntesis , Polisacáridos/biosíntesis , Aterosclerosis/genética , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Fallo Renal Crónico/genética , Ácido N-Acetilneuramínico/genética , Polisacáridos/genética
9.
J Infect Dis ; 222(10): 1641-1650, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32692363

RESUMEN

Novel therapies to counteract multidrug-resistant gonorrhea are urgently needed. A unique gonococcal immune evasion strategy involves capping of lipooligosaccharide (LOS) with sialic acid by gonococcal sialyltransferase (Lst), utilizing host-derived CMP-sialic acid (CMP-Neu5Ac in humans). LOS sialylation renders gonococci resistant to complement and cationic peptides, and down-regulates the inflammatory response by engaging siglecs. CMP-sialic acid analogs (CMP-nonulosonates [CMP-NulOs]) such as CMP-Leg5,7Ac2 and CMP-Kdn are also utilized by Lst. Incorporation of these NulO analogs into LOS maintains gonococci susceptible to complement. Intravaginal administration of CMP-Kdn or CMP-Leg5,7Ac2 attenuates gonococcal colonization of mouse vaginas. Here, we identify a key mechanism of action for the efficacy of CMP-NulOs. Surprisingly, CMP-NulOs remained effective in complement C1q-/- and C3-/- mice. LOS Neu5Ac, but not Leg5,7Ac2 or Kdn, conferred resistance to the cathelicidins LL-37 (human) and mouse cathelicidin-related antimicrobial peptide in vitro. CMP-NulOs were ineffective in Camp-/- mice, revealing that cathelicidins largely mediate the efficacy of therapeutic CMP-NulOs.


Asunto(s)
Catelicidinas/farmacología , Citidina Monofosfato/análogos & derivados , Citidina Monofosfato/metabolismo , Citidina Monofosfato/farmacología , Gonorrea/tratamiento farmacológico , Ácido N-Acetilneuramínico/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas del Sistema Complemento , Citidina Monofosfato/genética , Femenino , Lipopolisacáridos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Neisseria gonorrhoeae/efectos de los fármacos , Neisseria gonorrhoeae/metabolismo , Ácidos Neuramínicos , Ácidos Siálicos , Sialiltransferasas/metabolismo
10.
J Immunol ; 204(12): 3283-3295, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32434942

RESUMEN

Neisseria gonorrhoeae deploys a unique immune evasion strategy wherein the lacto-N-neotetraose termini of lipooligosaccharide (LOS) are "capped" by a surface LOS sialyltransferase (Lst), using extracellular host-derived CMP-sialic acid (CMP-Neu5Ac in humans). LOS sialylation enhances complement resistance by recruiting factor H (FH; alternative complement pathway inhibitor) and also by limiting classical pathway activation. Sialylated LOS also engages inhibitory Siglecs on host leukocytes, dampening innate immunity. Previously, we showed that analogues of CMP-sialic acids (CMP-nonulosonates [CMP-NulOs]), such as CMP-Leg5,7Ac2 and CMP-Neu5Ac9N3, are also substrates for Lst. Incorporation of Leg5,7Ac2 and Neu5Ac9N3 into LOS results in N. gonorrhoeae being fully serum sensitive. Importantly, intravaginal administration of CMP-Leg5,7Ac2 attenuated N. gonorrhoeae colonization of mouse vaginas. In this study, we characterize and develop additional candidate therapeutic CMP-NulOs. CMP-ketodeoxynonulosonate (CMP-Kdn) and CMP-Kdn7N3, but not CMP-Neu4,5Ac2, were substrates for Lst, further elucidating gonococcal Lst specificity. Lacto-N-neotetraose LOS capped with Kdn and Kdn7N3 bound FH to levels ∼60% of that seen with Neu5Ac and enabled gonococci to resist low (3.3%) but not higher (10%) concentrations of human complement. CMP-Kdn, CMP-Neu5Ac9N3, and CMP-Leg5,7Ac2 administered intravaginally (10 µg/d) to N. gonorrhoeae-colonized mice were equally efficacious. Of the three CMP-NulOs above, CMP-Leg5,7Ac2 was the most pH and temperature stable. In addition, Leg5,7Ac2-fed human cells did not display this NulO on their surface. Moreover, CMP-Leg5,7Ac2 was efficacious against several multidrug-resistant gonococci in mice with a humanized sialome (Cmah-/- mice) or humanized complement system (FH/C4b-binding protein transgenic mice). CMP-Leg5,7Ac2 and CMP-Kdn remain viable leads as topical preventive/therapeutic agents against the global threat of multidrug-resistant N. gonorrhoeae.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/farmacología , Citidina Monofosfato/análogos & derivados , Citidina Monofosfato/fisiología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Gonorrea/tratamiento farmacológico , Neisseria gonorrhoeae/efectos de los fármacos , Ácidos Neuramínicos/farmacología , Ácidos Siálicos/farmacología , Animales , Línea Celular Tumoral , Factor H de Complemento/metabolismo , Proteínas del Sistema Complemento/farmacología , Citidina Monofosfato/farmacología , Femenino , Gonorrea/metabolismo , Gonorrea/microbiología , Humanos , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Oligosacáridos/fisiología , Sialiltransferasas/farmacología
11.
Mater Sci Eng C Mater Biol Appl ; 111: 110778, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32279756

RESUMEN

Nowadays, fluorescent molybdenum disulfide quantum dots (MoS2 QDs) have proven to be potential candidates in the sensing and bioimaging areas owing to their exceptional intrinsic characteristics. Here, a simple hydrothermal strategy was explored for the preparation of MoS2 QDs using ammonium heptamolybdate and 6-mercaptopurine (6-MP) as precursors. The emission peak of MoS2 QDs was significantly quenched in the presence Cr3+ ion due to the selective surface chemistry on the surfaces of MoS2 QDs. The designed fluorescent MoS2 QDs showed a linear fluorescence quenching response with increasing concentration of Cr3+ ion (0.1-10 µM), allowing to detect Cr3+ ion even at 0.08 µM. This fluorescent MoS2 QDs were utilized for the quantification of Cr3+ ion in real samples (water and biological samples). Interestingly, the synthesized MoS2 QDs exhibited negligible cytotoxicity on NRK cells and acted as good candidates for imaging of Trichoderma viride fungal cells.


Asunto(s)
Cromo/análisis , Disulfuros/química , Colorantes Fluorescentes/química , Molibdeno/química , Puntos Cuánticos/química , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/farmacología , Agua Dulce/análisis , Hypocreales/fisiología , Iones/química , Mercaptopurina/química , Microscopía Fluorescente , Ratas , Espectrometría de Fluorescencia
12.
Biomacromolecules ; 21(2): 1031-1035, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31799838

RESUMEN

A semidilute cellulose nanocrystal suspension was tested for pressure, volume, temperature dependencies of its viscosity and density. The compression of a 2.0 wt % cellulose nanocrystal suspension under 5.0 MPa at room temperature resulted in morphological changes from istotropic to nematic form. However, at high temperature, high-pressure treatment caused desulfation and gelation. Those results have significant applications, not only as additives in drilling and fracturing fluids but also for the preparation of hydrogels.


Asunto(s)
Celulosa/química , Calor , Hidrogeles/química , Nanopartículas/química , Presión , Agua/química , Fuerza Compresiva/fisiología , Calor/efectos adversos , Presión/efectos adversos , Suspensiones , Viscosidad
14.
Int J Biol Macromol ; 129: 634-644, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30738163

RESUMEN

Efficient production of sugar monomers from lignocellulose is often hampered by serious bottle-necks in biomass hydrolysis. The present study reveals that ultra-sonication assisted pretreatment following autoclaving, termed as combined pretreatment, can lead to more efficient delignification of lignocellulosic biomass and an open, deformed polysaccharide matrix, found favorable for subsequent enzymatic hydrolysis, is formed. The pattern of inhibition for the enzymatic hydrolysis reaction on combined-pretreated saw dust is identified. Two main inhibition models (competitive and noncompetitive) are proposed and a better fit of experimental values with the theoretical values for the competitive inhibition model validates the proposition that in the present experiment, glucose inhibits the enzymes competitively. Additionally, accuracy of the inhibitory kinetics based models is estimated over a series of enzyme and substrate concentrations.


Asunto(s)
Biomasa , Celulasa/metabolismo , Glucosa/farmacología , Lignina/química , Xilosa/farmacología , Celulasa/antagonistas & inhibidores , Hidrólisis/efectos de los fármacos , Cinética , Morus/química , Sonicación
15.
mBio ; 9(5)2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30279285

RESUMEN

Invasion of host cells by apicomplexan parasites such as Toxoplasma gondii is critical for their infectivity and pathogenesis. In Toxoplasma, secretion of essential egress, motility, and invasion-related proteins from microneme organelles is regulated by oscillations of intracellular Ca2+ Later stages of invasion are considered Ca2+ independent, including the secretion of proteins required for host cell entry and remodeling from the parasite's rhoptries. We identified a family of three Toxoplasma proteins with homology to the ferlin family of double C2 domain-containing Ca2+ sensors. In humans and model organisms, such Ca2+ sensors orchestrate Ca2+-dependent exocytic membrane fusion with the plasma membrane. Here we focus on one ferlin that is conserved across the Apicomplexa, T. gondii FER2 (TgFER2). Unexpectedly, conditionally TgFER2-depleted parasites secreted their micronemes normally and were completely motile. However, these parasites were unable to invade host cells and were therefore not viable. Knockdown of TgFER2 prevented rhoptry secretion, and these parasites failed to form the moving junction at the parasite-host interface necessary for host cell invasion. Collectively, these data demonstrate the requirement of TgFER2 for rhoptry secretion in Toxoplasma tachyzoites and suggest a possible Ca2+ dependence of rhoptry secretion. These findings provide the first mechanistic insights into this critical yet poorly understood aspect of apicomplexan host cell invasion.IMPORTANCE Apicomplexan protozoan parasites, such as those causing malaria and toxoplasmosis, must invade the cells of their hosts in order to establish a pathogenic infection. Timely release of proteins from a series of apical organelles is required for invasion. Neither the vesicular fusion events that underlie secretion nor the observed reliance of the various processes on changes in intracellular calcium concentrations is completely understood. We identified a group of three proteins with strong homology to the calcium-sensing ferlin family, which are known to be involved in protein secretion in other organisms. Surprisingly, decreasing the amounts of one of these proteins (TgFER2) did not have any effect on the typically calcium-dependent steps in invasion. Instead, TgFER2 was essential for the release of proteins from organelles called rhoptries. These data provide a tantalizing first look at the mechanisms controlling the very poorly understood process of rhoptry secretion, which is essential for the parasite's infection cycle.


Asunto(s)
Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/enzimología , Línea Celular , Técnicas de Silenciamiento del Gen , Genoma de Protozoos , Interacciones Huésped-Parásitos , Humanos , Proteínas Protozoarias/genética , Toxoplasma/genética
16.
Proc Natl Acad Sci U S A ; 115(41): 10410-10415, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30254166

RESUMEN

Natural killer (NK) cells are innate immune lymphocytes that recognize and destroy abnormal host cells, such as tumor cells or those infected by viral pathogens. To safely accomplish these functions, NK cells display activating receptors that detect stress molecules or viral ligands displayed at the cell surface, balanced by inhibitory receptors that bind to self-molecules. To date, such activating and inhibitory receptors on NK cells are not known to recognize bacterial determinants. Moreover, NK cell responses to direct interactions with extracellular bacteria are poorly explored. In this study, we observed the human neonatal pathogen group B Streptococcus (GBS) can directly engage human NK cells. The interaction was mediated through the B6N segment of streptococcal ß-protein, binding to the inhibitory receptor Siglec-7 via its amino-terminal V-set domain. Unlike classical Siglec binding, the interaction is also independent of its sialic acid recognition property. In contrast to WT GBS, mutants lacking ß-protein induced efficient pyroptosis of NK cells through the NLRP3 inflammasome, with production and secretion of the proinflammatory cytokine IL-1ß and dissemination of the cytotoxic molecule granzyme B. We postulate that GBS evolved ß-protein engagement of inhibitory human Siglec-7 to suppress the pyroptotic response of NK cells and thereby block recruitment of a broader innate immune response, i.e., by "silencing the sentinel."


Asunto(s)
Antígenos de Diferenciación Mielomonocítica/metabolismo , Proteínas de Unión al ADN/metabolismo , Inmunidad Innata/inmunología , Mediadores de Inflamación/metabolismo , Células Asesinas Naturales/patología , Lectinas/metabolismo , Piroptosis , Antígenos de Diferenciación Mielomonocítica/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Lectinas/genética
17.
Infect Immun ; 86(8)2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29844237

RESUMEN

Sialylation of lacto-N-neotetraose (LNnT) extending from heptose I (HepI) of gonococcal lipooligosaccharide (LOS) contributes to pathogenesis. Previously, gonococcal LOS sialyltransterase (Lst) was shown to sialylate LOS in Triton X-100 extracts of strain 15253, which expresses lactose from both HepI and HepII, the minimal structure required for monoclonal antibody (MAb) 2C7 binding. Ongoing work has shown that growth of 15253 in cytidine monophospho-N-acetylneuraminic acid (CMP-Neu5Ac)-containing medium enables binding to CD33/Siglec-3, a cell surface receptor that binds sialic acid, suggesting that lactose termini on LOSs of intact gonococci can be sialylated. Neu5Ac was detected on LOSs of strains 15253 and an MS11 mutant with lactose only from HepI and HepII by mass spectrometry; deleting HepII lactose rendered Neu5Ac undetectable. Resistance of HepII lactose Neu5Ac to desialylation by α2-3-specific neuraminidase suggested an α2-6 linkage. Although not associated with increased factor H binding, HepII lactose sialylation inhibited complement C3 deposition on gonococci. Strain 15253 mutants that lacked Lst or HepII lactose were significantly attenuated in mice, confirming the importance of HepII Neu5Ac in virulence. All 75 minimally passaged clinical isolates from Nanjing, China, expressed HepII lactose, evidenced by reactivity with MAb 2C7; MAb 2C7 was bactericidal against the first 62 (of 75) isolates that had been collected sequentially and were sialylated before testing. MAb 2C7 effectively attenuated 15253 vaginal colonization in mice. In conclusion, this novel sialylation site could explain the ubiquity of gonococcal HepII lactose in vivo Our findings reinforce the candidacy of the 2C7 epitope as a vaccine antigen and MAb 2C7 as an immunotherapeutic antibody.


Asunto(s)
Gonorrea/microbiología , Heptosas/metabolismo , Lactosa/metabolismo , Lipopolisacáridos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Neisseria gonorrhoeae/metabolismo , Neisseria gonorrhoeae/patogenicidad , Adulto , Animales , Anticuerpos Antibacterianos/inmunología , Anticuerpos Antibacterianos/metabolismo , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , China , Modelos Animales de Enfermedad , Femenino , Voluntarios Sanos , Humanos , Lipopolisacáridos/química , Masculino , Espectrometría de Masas , Ratones , Viabilidad Microbiana/efectos de los fármacos , Ácido N-Acetilneuramínico/análisis , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/aislamiento & purificación
18.
mSphere ; 2(6)2017.
Artículo en Inglés | MEDLINE | ID: mdl-29202046

RESUMEN

Paralogs of the widely prevalent phosphoglucomutase (PGM) protein called parafusin function in calcium (Ca2+)-mediated exocytosis across eukaryotes. In Toxoplasma gondii, the parafusin-related protein 1 (PRP1) has been associated with Ca2+-dependent microneme organelle secretion required for essential processes like host cell invasion and egress. Using reverse genetics, we observed PRP1 to be dispensable for completion of the lytic cycle, including host cell invasion and egress by the parasite. However, the absence of the gene affected increased microneme release triggered by A23187, a Ca2+ ionophore used to raise the cytoplasmic Ca2+ concentration mimicking the physiological role of Ca2+ during invasion and egress. The basal levels of constitutive microneme release in extracellular parasites and phosphatidic acid-triggered microneme secretion were unaffected in the mutant. The phenotype of the deletion mutant of the second PGM-encoding gene in Toxoplasma, PGM2, was similar to the phenotype of the PRP1 deletion mutant. Furthermore, the ability of the tachyzoites to induce acute infection in the mice remained normal in the absence of both PGM paralogs. Our data thus reveal that the microneme secretion upon high Ca2+ flux is facilitated by the Toxoplasma PGM paralogs, PRP1 and PGM2. However, this protein-mediated release is neither essential for lytic cycle completion nor for acute virulence of the parasite. IMPORTANCE Ca2+-dependent exocytosis is essential for the life cycle of apicomplexan parasites. Toxoplasma gondii harbors a phosphoglucomutase (PGM) ortholog, PRP1, previously associated with Ca2+-dependent microneme secretion. Here it is shown that genetic deletion of either PRP1, its PGM2 ortholog, or both genes is dispensable for the parasite's lytic cycle, including host cell egress and invasion. Depletion of the proteins abrogated high Ca2+-mediated microneme secretion induced by the ionophore A23187; however, the constitutive and phosphatidic acid-mediated release remained unaffected. Secretion mediated by the former pathway is not essential for tachyzoite survival or acute in vivo infection in the mice.

19.
Cell Host Microbe ; 18(1): 49-60, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26118996

RESUMEN

Apicomplexans invade a variety of metazoan host cells through mechanisms involving host cell receptor engagement and secretion of parasite factors to facilitate cellular attachment. We find that the parasite homolog of calcineurin, a calcium-regulated phosphatase complex central to signal transduction in eukaryotes, also contributes to host cell invasion by the malaria parasite Plasmodium falciparum and related Toxoplasma gondii. Using reverse-genetic and chemical-genetic approaches, we determine that calcineurin critically regulates and stabilizes attachment of extracellular P. falciparum to host erythrocytes before intracellular entry and has similar functions in host cell engagement by T. gondii. Calcineurin-mediated Plasmodium invasion is strongly associated with host receptors required for host cell recognition, and calcineurin function distinguishes this form of receptor-mediated attachment from a second mode of host-parasite adhesion independent of host receptors. This specific role of calcineurin in coordinating physical interactions with host cells highlights an ancestral mechanism for parasitism used by apicomplexans.


Asunto(s)
Calcineurina/metabolismo , Adhesión Celular , Plasmodium falciparum/enzimología , Plasmodium falciparum/fisiología , Toxoplasma/enzimología , Toxoplasma/fisiología , Eritrocitos/parasitología , Fibroblastos/parasitología , Humanos
20.
Nat Prod Res ; 29(19): 1850-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25674969

RESUMEN

Phytochemical investigation of the plant Clerodendrum phlomidis Linn. F. (Lamiaceae) has now led to the isolation of two new flavonoid glycosides (1, 2) together with six known compounds identified as pectolinaringenin (3), pectolinaringenin-7-O-ß-D-glucopyranoside (4), 24ß-ethylcholesta-5,22E,25-triene-3ß-ol (5), 24ß-ethylcholesta-5,22E,25-triene-3ß-O-ß-D-glucopyranoside (6), (2S,3S,4R,10E)-2-[(2'R)-2'-hydroxytetracosanoylamino]-10-octadecene-1,3,4-triol (7) and andrographolide (8) mainly by spectroscopic analysis. Compounds 4 and 6-8 are reported for the first time from C. phlomidis.


Asunto(s)
Clerodendrum/química , Flavonoides/química , Glicósidos/química , Flavonoides/aislamiento & purificación , Glicósidos/aislamiento & purificación , Estructura Molecular , Hojas de la Planta/química , Plantas Medicinales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...