Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Sci Transl Med ; 16(747): eadj7685, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748774

RESUMEN

Intrahepatic cholangiocarcinoma (ICC) is an aggressive bile duct malignancy that frequently exhibits isocitrate dehydrogenase (IDH1/IDH2) mutations. Mutant IDH (IDHm) ICC is dependent on SRC kinase for growth and survival and is hypersensitive to inhibition by dasatinib, but the molecular mechanism underlying this sensitivity is unclear. We found that dasatinib reduced p70 S6 kinase (S6K) and ribosomal protein S6 (S6), leading to substantial reductions in cell size and de novo protein synthesis. Using an unbiased phosphoproteomic screen, we identified membrane-associated guanylate kinase, WW, and PDZ domain containing 1 (MAGI1) as an SRC substrate in IDHm ICC. Biochemical and functional assays further showed that SRC inhibits a latent tumor-suppressing function of the MAGI1-protein phosphatase 2A (PP2A) complex to activate S6K/S6 signaling in IDHm ICC. Inhibiting SRC led to activation and increased access of PP2A to dephosphorylate S6K, resulting in cell death. Evidence from patient tissue and cell line models revealed that both intrinsic and extrinsic resistance to dasatinib is due to increased phospho-S6 (pS6). To block pS6, we paired dasatinib with the S6K/AKT inhibitor M2698, which led to a marked reduction in pS6 in IDHm ICC cell lines and patient-derived organoids in vitro and substantial growth inhibition in ICC patient-derived xenografts in vivo. Together, these results elucidated the mechanism of action of dasatinib in IDHm ICC, revealed a signaling complex regulating S6K phosphorylation independent of mTOR, suggested markers for dasatinib sensitivity, and described a combination therapy for IDHm ICC that may be actionable in the clinic.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Colangiocarcinoma , Dasatinib , Isocitrato Deshidrogenasa , Mutación , Familia-src Quinasas , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/patología , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Humanos , Dasatinib/farmacología , Mutación/genética , Familia-src Quinasas/metabolismo , Familia-src Quinasas/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular Tumoral , Isocitrato Deshidrogenasa/metabolismo , Isocitrato Deshidrogenasa/genética , Animales , Moléculas de Adhesión Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ratones , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo
2.
ACS Appl Mater Interfaces ; 15(12): 15595-15604, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36926805

RESUMEN

A direct external input energy source (e.g., light, chemical reaction, redox potential, etc.) is compulsory to supply energy to rotary motors for accomplishing rotation around the axis. The stator leads the direction of rotation, and a sustainable rotation requires two mutual input energy supplies (e.g., light and heat, light and pH or metal ion, etc.); however, there are some exceptions (e.g., covalent single bond rotors and/or motors). On the contrary, our experiment suggested that double ratchet rotary motors (DRMs) can harvest power from available thermal noise, kT, for sustainable rotation around the axis. Under a scanning tunneling microscope, we have imaged live thermal noise movement as a dynamic orbital density and resolved the density diagram up to the second derivative. A second input energy can synchronize multiple rotors to afford a measurable output. Therefore, we hypothesized that rotation control in a DRM must be evolved from an orbital-level information transport channel between the two coupled rotors but was not limited to the second input energy. A DRM comprises a Brownian rotor and a power stroke rotor coupled to a -C≡C- stator, where the transport of information through coupled orbitals between the two rotors is termed the vibrational information flow chain (VIFC). We test this hypothesis by studying the DRM's density functional theory calculation and variable-temperature 1H nuclear magnetic resonance. Additionally, we introduced inbuilt pawl-like functional moieties into a DRM to create different electronic environments by changing proton intercalation interactions, which gated information processing through the VIFC. The results show the VIFC can critically impact the motor's noise harvesting, resulting in variable rotational motions in DRMs.

3.
Nat Cancer ; 4(3): 365-381, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36914816

RESUMEN

Adult liver malignancies, including intrahepatic cholangiocarcinoma and hepatocellular carcinoma, are the second leading cause of cancer-related deaths worldwide. Most individuals are treated with either combination chemotherapy or immunotherapy, respectively, without specific biomarkers for selection. Here using high-throughput screens, proteomics and in vitro resistance models, we identify the small molecule YC-1 as selectively active against a defined subset of cell lines derived from both liver cancer types. We demonstrate that selectivity is determined by expression of the liver-resident cytosolic sulfotransferase enzyme SULT1A1, which sulfonates YC-1. Sulfonation stimulates covalent binding of YC-1 to lysine residues in protein targets, enriching for RNA-binding factors. Computational analysis defined a wider group of structurally related SULT1A1-activated small molecules with distinct target profiles, which together constitute an untapped small-molecule class. These studies provide a foundation for preclinical development of these agents and point to the broader potential of exploiting SULT1A1 activity for selective targeting strategies.


Asunto(s)
Alquilantes , Neoplasias Hepáticas , Humanos , Sulfotransferasas , Neoplasias Hepáticas/tratamiento farmacológico , Arilsulfotransferasa
4.
Dalton Trans ; 50(19): 6735, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-33960348

RESUMEN

Correction for 'A ferrocene functionalized Schiff base containing Cu(ii) complex: synthesis, characterization and parts-per-million level catalysis for azide alkyne cycloaddition' by Firdaus Rahaman Gayen et al., Dalton Trans., 2020, 49, 6578-6586, DOI: 10.1039/d0dt00915f.

5.
Nat Commun ; 12(1): 3199, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34045463

RESUMEN

In patients with metastatic cancer, spatial heterogeneity of somatic alterations may lead to incomplete assessment of a cancer's mutational profile when analyzing a single tumor biopsy. In this study, we perform sequencing of cell-free DNA (cfDNA) and distinct metastatic tissue samples from ten rapid autopsy cases with pre-treated metastatic cancer. We show that levels of heterogeneity in genetic biomarkers vary between patients but that gene expression signatures representative of the tumor microenvironment are more consistent. Across nine patients with plasma samples available, we are able to detect 62/62 truncal and 47/121 non-truncal point mutations in cfDNA. We observe that mutation clonality in cfDNA is correlated with the number of metastatic lesions in which the mutation is detected and use this result to derive a clonality threshold to classify truncal and non-truncal driver alterations with reasonable specificity. In contrast, mutation truncality is more often incorrectly assigned when studying single tissue samples. Our results demonstrate the utility of a single cfDNA sample relative to that of single tissue samples when treating patients with metastatic cancer.


Asunto(s)
Autopsia/métodos , ADN Tumoral Circulante/genética , Análisis Mutacional de ADN/métodos , Neoplasias/diagnóstico , Microambiente Tumoral/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor/genética , Quimioradioterapia Adyuvante , Estudios de Cohortes , Variaciones en el Número de Copia de ADN , Femenino , Heterogeneidad Genética , Humanos , Masculino , Terapia Neoadyuvante , Neoplasias/sangre , Neoplasias/patología , Neoplasias/terapia , Mutación Puntual , RNA-Seq , Valores de Referencia , Sensibilidad y Especificidad , Análisis Espacial , Factores de Tiempo , Secuenciación del Exoma
6.
Soft Matter ; 17(7): 2010, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33595049

RESUMEN

Correction for 'Speedy one-pot electrochemical synthesis of giant octahedrons from in situ generated pyrrolidinyl PAMAM dendrimer' by Anup Singhania et al., Soft Matter, 2020, 16, 9140-9146, DOI: 10.1039/D0SM00819B.

7.
Soft Matter ; 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32926056

RESUMEN

A novel electrochemical synthesis via a radical generation pathway is described here for the generation of a quaternary megamer structure from secondary dendrimers. The reaction is rapid and completes in <5 min. We have used lower/higher generation poly(amido)amine (PAMAM) dendrimers with carboxylic acid groups at the terminals. A precise electrocatalytic reaction at >3.5 V activates the carboxylic groups to undergo anodic oxidation (-e-) and produce radical carboxylate anions on the dendrimer surface. The reaction further goes through a decarboxylative elimination. Successive self-assembly creates billions of polydispersed and extremely stable ∼500 nm octahedron nanostructures, which we failed to destroy even by using a 20 kV electron beam. This is a new route for the speedy synthesis of important futuristic materials of well-defined shape. It has applications in building designer organic crystals for solar cells, organic electronics, rapid protein gelation, rapid protein crystallization, etc.

8.
Dalton Trans ; 49(20): 6578-6586, 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32342974

RESUMEN

Atom economy is one of the major factors in developing catalysis chemistry. Using the minimum amount of catalyst to obtain the maximum product yield is of the utmost priority in catalysis, which drives us to use parts-per-million (ppm) levels of catalyst loadings in syntheses. In this context, a new ferrocene functionalized Schiff base and its copper(ii) complex have been synthesized and characterized. This Cu(ii) complex is employed as a catalyst for popular 'click chemistry', where 1,2,3-triazoles are the end product. As low as 5 ppm catalyst loading is enough to produce gram scale product, and highest turnover number (TON) and turnover frequency (TOF) values of 140 000 and 70 000 h-1 are achieved, respectively. Furthermore, this highly efficient protocol has been successfully applied to the preparation of diverse functionalized materials with pharmaceutical, labelling and supramolecular properties.

9.
Cancer Discov ; 9(8): 1064-1079, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31109923

RESUMEN

ATP-competitive fibroblast growth factor receptor (FGFR) kinase inhibitors, including BGJ398 and Debio 1347, show antitumor activity in patients with intrahepatic cholangiocarcinoma (ICC) harboring activating FGFR2 gene fusions. Unfortunately, acquired resistance develops and is often associated with the emergence of secondary FGFR2 kinase domain mutations. Here, we report that the irreversible pan-FGFR inhibitor TAS-120 demonstrated efficacy in 4 patients with FGFR2 fusion-positive ICC who developed resistance to BGJ398 or Debio 1347. Examination of serial biopsies, circulating tumor DNA (ctDNA), and patient-derived ICC cells revealed that TAS-120 was active against multiple FGFR2 mutations conferring resistance to BGJ398 or Debio 1347. Functional assessment and modeling the clonal outgrowth of individual resistance mutations from polyclonal cell pools mirrored the resistance profiles observed clinically for each inhibitor. Our findings suggest that strategic sequencing of FGFR inhibitors, guided by serial biopsy and ctDNA analysis, may prolong the duration of benefit from FGFR inhibition in patients with FGFR2 fusion-positive ICC. SIGNIFICANCE: ATP-competitive FGFR inhibitors (BGJ398, Debio 1347) show efficacy in FGFR2-altered ICC; however, acquired FGFR2 kinase domain mutations cause drug resistance and tumor progression. We demonstrate that the irreversible FGFR inhibitor TAS-120 provides clinical benefit in patients with resistance to BGJ398 or Debio 1347 and overcomes several FGFR2 mutations in ICC models.This article is highlighted in the In This Issue feature, p. 983.


Asunto(s)
Adenosina Trifosfato/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Resistencia a Antineoplásicos/genética , Inhibidores de Proteínas Quinasas/farmacología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Adulto , Anciano , Línea Celular Tumoral , Colangiocarcinoma/diagnóstico , ADN Tumoral Circulante , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Proteínas de Fusión Oncogénica/antagonistas & inhibidores , Proteínas de Fusión Oncogénica/genética , Compuestos de Fenilurea/farmacología , Inhibidores de Proteínas Quinasas/química , Pirimidinas/farmacología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Tomografía Computarizada por Rayos X
10.
Semin Oncol ; 45(3): 116-123, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-30348531

RESUMEN

The recent accumulation of molecular profiling data for primary hepatobiliary malignancies, including hepatocellular carcinoma and biliary tract cancers, has led to a proliferation of promising therapeutic investigations in recent years. Treatment with pathway-specific targeted inhibitors and immunotherapeutic agents have demonstrated promising early clinical results. Key molecular alterations in common hepatobiliary cancers and ongoing interventional clinical trials of molecularly targeted systemic agents focusing on hepatocellular carcinoma and biliary tract cancer are reviewed.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias del Sistema Biliar/tratamiento farmacológico , Biomarcadores de Tumor/antagonistas & inhibidores , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Terapia Molecular Dirigida/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias del Sistema Biliar/metabolismo , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Resultado del Tratamiento
11.
Cancer Discov ; 7(3): 252-263, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28034880

RESUMEN

Genetic alterations in the fibroblast growth factor receptor (FGFR) pathway are promising therapeutic targets in many cancers, including intrahepatic cholangiocarcinoma (ICC). The FGFR inhibitor BGJ398 displayed encouraging efficacy in patients with FGFR2 fusion-positive ICC in a phase II trial, but the durability of response was limited in some patients. Here, we report the molecular basis for acquired resistance to BGJ398 in three patients via integrative genomic characterization of cell-free circulating tumor DNA (cfDNA), primary tumors, and metastases. Serial analysis of cfDNA demonstrated multiple recurrent point mutations in the FGFR2 kinase domain at progression. Accordingly, biopsy of post-progression lesions and rapid autopsy revealed marked inter- and intralesional heterogeneity, with different FGFR2 mutations in individual resistant clones. Molecular modeling and in vitro studies indicated that each mutation led to BGJ398 resistance and was surmountable by structurally distinct FGFR inhibitors. Thus, polyclonal secondary FGFR2 mutations represent an important clinical resistance mechanism that may guide the development of future therapeutic strategies.Significance: We report the first genetic mechanisms of clinical acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive ICC. Our findings can inform future strategies for detecting resistance mechanisms and inducing more durable remissions in ICC and in the wide variety of cancers where the FGFR pathway is being explored as a therapeutic target. Cancer Discov; 7(3); 252-63. ©2016 AACR.See related commentary by Smyth et al., p. 248This article is highlighted in the In This Issue feature, p. 235.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Colangiocarcinoma/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Compuestos de Fenilurea/uso terapéutico , Pirimidinas/uso terapéutico , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Adulto , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Proteínas de Ciclo Celular , Colangiocarcinoma/genética , Colangiocarcinoma/patología , ADN Tumoral Circulante/genética , Femenino , Fusión Génica , Humanos , Masculino , Proteínas de Transporte de Membrana , Persona de Mediana Edad , Mutación , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Factor de Transcripción TFIIIA/genética
12.
Cell ; 165(6): 1401-1415, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27180906

RESUMEN

Chromatin remodeling proteins are frequently dysregulated in human cancer, yet little is known about how they control tumorigenesis. Here, we uncover an epigenetic program mediated by the NAD(+)-dependent histone deacetylase Sirtuin 6 (SIRT6) that is critical for suppression of pancreatic ductal adenocarcinoma (PDAC), one of the most lethal malignancies. SIRT6 inactivation accelerates PDAC progression and metastasis via upregulation of Lin28b, a negative regulator of the let-7 microRNA. SIRT6 loss results in histone hyperacetylation at the Lin28b promoter, Myc recruitment, and pronounced induction of Lin28b and downstream let-7 target genes, HMGA2, IGF2BP1, and IGF2BP3. This epigenetic program defines a distinct subset with a poor prognosis, representing 30%-40% of human PDAC, characterized by reduced SIRT6 expression and an exquisite dependence on Lin28b for tumor growth. Thus, we identify SIRT6 as an important PDAC tumor suppressor and uncover the Lin28b pathway as a potential therapeutic target in a molecularly defined PDAC subset. PAPERCLIP.


Asunto(s)
Adenocarcinoma/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/genética , Proteínas de Unión al ARN/genética , Sirtuinas/genética , Acetilación , Animales , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina , Epigénesis Genética , Femenino , Genes ras , Histonas/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas de Unión al ARN/metabolismo , Proteínas Supresoras de Tumor/metabolismo
13.
Cancer Discov ; 6(7): 727-39, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27231123

RESUMEN

UNLABELLED: Intrahepatic cholangiocarcinoma (ICC) is an aggressive liver bile duct malignancy exhibiting frequent isocitrate dehydrogenase (IDH1/IDH2) mutations. Through a high-throughput drug screen of a large panel of cancer cell lines, including 17 biliary tract cancers, we found that IDH mutant (IDHm) ICC cells demonstrate a striking response to the multikinase inhibitor dasatinib, with the highest sensitivity among 682 solid tumor cell lines. Using unbiased proteomics to capture the activated kinome and CRISPR/Cas9-based genome editing to introduce dasatinib-resistant "gatekeeper" mutant kinases, we identified SRC as a critical dasatinib target in IDHm ICC. Importantly, dasatinib-treated IDHm xenografts exhibited pronounced apoptosis and tumor regression. Our results show that IDHm ICC cells have a unique dependency on SRC and suggest that dasatinib may have therapeutic benefit against IDHm ICC. Moreover, these proteomic and genome-editing strategies provide a systematic and broadly applicable approach to define targets of kinase inhibitors underlying drug responsiveness. SIGNIFICANCE: IDH mutations define a distinct subtype of ICC, a malignancy that is largely refractory to current therapies. Our work demonstrates that IDHm ICC cells are hypersensitive to dasatinib and critically dependent on SRC activity for survival and proliferation, pointing to new therapeutic strategies against these cancers. Cancer Discov; 6(7); 727-39. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 681.


Asunto(s)
Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Dasatinib/farmacología , Resistencia a Antineoplásicos/genética , Isocitrato Deshidrogenasa/genética , Mutación , Familia-src Quinasas/metabolismo , Animales , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Línea Celular Tumoral , Proliferación Celular , Análisis por Conglomerados , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Oncologist ; 21(5): 594-9, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27000463

RESUMEN

BACKGROUND: Challenges in the diagnosis and classification of cholangiocarcinoma have made it difficult to quantify the true incidence of this highly aggressive malignancy. METHODS: We analyzed the Surveillance, Epidemiology, and End Results data to assess long-term trends in the age-standardized incidence of intrahepatic and extrahepatic cholangiocarcinoma between 1973 and 2012, correcting for systematic coding errors. Because intrahepatic cholangiocarcinoma (ICC) may frequently be misdiagnosed as cancer of unknown primary (CUP), we also analyzed trends in the incidence of CUP. RESULTS: Between 1973 and 2012, the reported U.S. incidence of ICC increased from 0.44 to 1.18 cases per 100,000, representing an annual percentage change (APC) of 2.30%; this trend has accelerated during the past decade to an APC of 4.36%. The incidence of extrahepatic cholangiocarcinoma increased modestly from 0.95 to 1.02 per 100,000 during the 40-year period (APC, 0.14%). The incidence of CUP with histologic features potentially consistent with cholangiocarcinoma decreased by 51% between 1973 and 2012 (APC, -1.87%), whereas the incidence of CUP with squamous or nonepithelial histologic features increased modestly (APC, 0.42%). CONCLUSION: The recognized incidence of ICC in the U.S. continues to rise, whereas the incidence of ECC is stable. The incidence of CUP has fallen dramatically during the same time period. IMPLICATIONS FOR PRACTICE: Clinical distinctions between cholangiocarcinoma (particularly intrahepatic cholangiocarcinoma [ICC]) and cancer of unknown primary (CUP) can be challenging. Recent discoveries have identified recurrent and potentially targetable genomic abnormalities in ICC, highlighting the importance of improving diagnosis. This study demonstrates that the incidence of ICC is increasing in the U.S., whereas the incidence of extrahepatic cholangiocarcinoma is stable. Concomitantly, the incidence of CUP has declined dramatically, suggesting that improved distinction between ICC and CUP may be a major driver of the increasing recognized incidence of ICC. The increasing incidence of ICC warrants further study of prevention and treatment approaches.


Asunto(s)
Neoplasias de los Conductos Biliares/epidemiología , Conductos Biliares Intrahepáticos , Colangiocarcinoma/epidemiología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Neoplasias Primarias Desconocidas/epidemiología , Estados Unidos/epidemiología
17.
Oncologist ; 20(9): 1019-27, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26245674

RESUMEN

BACKGROUND: Conflicting data exist regarding the prognostic impact of the isocitrate dehydrogenase (IDH) mutation in intrahepatic cholangiocarcinoma (ICC), and limited data exist in patients with advanced-stage disease. Similarly, the clinical phenotype of patients with advanced IDH mutant (IDHm) ICC has not been characterized. In this study, we report the correlation of IDH mutation status with prognosis and clinicopathologic features in patients with advanced ICC. METHODS: Patients with histologically confirmed advanced ICC who underwent tumor mutational profiling as a routine part of their care between 2009 and 2014 were evaluated. Clinical and pathological data were collected by retrospective chart review for patients with IDHm versus IDH wild-type (IDHwt) ICC. Pretreatment tumor volume was calculated on computed tomography or magnetic resonance imaging. RESULTS: Of the 104 patients with ICC who were evaluated, 30 (28.8%) had an IDH mutation (25.0% IDH1, 3.8% IDH2). The median overall survival did not differ significantly between IDHm and IDHwt patients (15.0 vs. 20.1 months, respectively; p = .17). The pretreatment serum carbohydrate antigen 19-9 (CA19-9) level in IDHm and IDHwt patients was 34.5 and 118.0 U/mL, respectively (p = .04). Age at diagnosis, sex, histologic grade, and pattern of metastasis did not differ significantly by IDH mutation status. CONCLUSION: The IDH mutation was not associated with prognosis in patients with advanced ICC. The clinical phenotypes of advanced IDHm and IDHwt ICC were similar, but patients with IDHm ICC had a lower median serum CA19-9 level at presentation. IMPLICATIONS FOR PRACTICE: Previous studies assessing the prognostic impact of the isocitrate dehydrogenase (IDH) gene mutation in intrahepatic cholangiocarcinoma (ICC) mainly focused on patients with early-stage disease who have undergone resection. These studies offer conflicting results. The target population for clinical trials of IDH inhibitors is patients with unresectable or metastatic disease, and the current study is the first to focus on the prognosis and clinical phenotype of this population and reports on the largest cohort of patients with advanced IDH mutant ICC to date. The finding that the IDH mutation lacks prognostic significance in advanced ICC is preliminary and needs to be confirmed prospectively in a larger study.


Asunto(s)
Neoplasias de los Conductos Biliares/enzimología , Neoplasias de los Conductos Biliares/genética , Colangiocarcinoma/enzimología , Colangiocarcinoma/genética , Isocitrato Deshidrogenasa/genética , Adulto , Anciano , Neoplasias de los Conductos Biliares/patología , Colangiocarcinoma/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Pronóstico , Adulto Joven
18.
J Am Chem Soc ; 137(29): 9281-8, 2015 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-26148208

RESUMEN

We present quantum chemical simulations demonstrating how single-walled carbon nanotubes (SWCNTs) form, or "nucleate", on the surface of Al2O3 nanoparticles during chemical vapor deposition (CVD) using CH4. SWCNT nucleation proceeds via the formation of extended polyyne chains that only interact with the catalyst surface at one or both ends. Consequently, SWCNT nucleation is not a surface-mediated process. We demonstrate that this unusual nucleation sequence is due to two factors. First, the π interaction between graphitic carbon and Al2O3 is extremely weak, such that graphitic carbon is expected to desorb at typical CVD temperatures. Second, hydrogen present at the catalyst surface actively passivates dangling carbon bonds, preventing a surface-mediated nucleation mechanism. The simulations reveal hydrogen's reactive chemical pathways during SWCNT nucleation and that the manner in which SWCNTs form on Al2O3 is fundamentally different from that observed using "traditional" transition metal catalysts.


Asunto(s)
Óxido de Aluminio/química , Metano/química , Simulación de Dinámica Molecular , Nanotubos de Carbono/química , Catálisis , Hidrógeno/química , Conformación Molecular , Nanopartículas/química , Teoría Cuántica , Silicio/química , Volatilización
19.
Am J Surg ; 209(3): 570-4, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25601557

RESUMEN

BACKGROUND: American Joint Committee on Cancer uses tumor size for "T" staging of many solid tumors for its effect on prognosis. However, tumor size has not been incorporated in tumor (T), nodal status (N), metastasis (M) staging for colon cancer. Hence, the National Cancer Data Base was used to determine whether tumor size correlates with TNM staging and survival. METHODS: For the 300,386 patients, tumor size was divided into S1 (0 to 2 cm), S2 (>2 to 4 cm), S3 (>4 to 6 cm), and S4 (>6 cm). Statistical comparison was done for TNM stage, grade, and nodal status with tumor size. Kaplan-Meier survival analysis was done for each "S" stage. RESULTS: Of the 300,386 patients, 13% were classified as S1, 39% S2, 30% S3 and 18% as S4. Right colon was the most common site (48%). Tumor size positively correlated with grade, T stage, and nodal stage. Tumor size was inversely associated with survival. CONCLUSION: Tumor size is positively correlated with important prognostic factors and negatively impacted survival.


Asunto(s)
Neoplasias del Colon/diagnóstico , Neoplasias del Colon/mortalidad , Estadificación de Neoplasias , Sistema de Registros , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Estudios de Seguimiento , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Tasa de Supervivencia/tendencias , Factores de Tiempo , Estados Unidos/epidemiología , Adulto Joven
20.
Cell Cycle ; 13(20): 3176-82, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25485496

RESUMEN

Intrahepatic cholangiocarcinoma (ICC) is an aggressive cancer associated with the bile ducts within the liver. These tumors are characterized by frequent gain-of-function mutations in the isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) genes-that are also common in subsets of neural, haematopoietic and bone tumors, but rare or absent in the other types of gastrointestinal malignancy. Mutant IDH acts through a novel mechanism of oncogenesis, producing high levels of the metabolite 2-hydroxyglutarate, which interferes with the function of α-ketoglutarate-dependent enzymes that regulate diverse cellular processes including histone demethylation and DNA modification. Recently, we used in vitro stem cell systems and genetically engineered mouse models (GEMMs) to demonstrate that mutant IDH promotes ICC formation by blocking hepatocyte differentiation and increasing pools of hepatic progenitors that are susceptible to additional oncogenic hits leading to ICC. We found that silencing of HNF4A-encoding a master transcriptional regulator of hepatocyte identity and quiescence-was critical to mutant IDH-mediated inhibition of liver differentiation. In line with these findings, human ICC with IDH mutations are characterized by a hepatic progenitor cell transcriptional signature suggesting that they are a distinct ICC subtype as compared to IDH wild type tumors. The role of mutant IDH in controlling hepatic differentiation state suggests the potential of newly developed inhibitors of the mutant enzyme as a form of differentiation therapy in a solid tumor.


Asunto(s)
Neoplasias de los Conductos Biliares/enzimología , Conductos Biliares Intrahepáticos/enzimología , Colangiocarcinoma/enzimología , Hepatocitos/citología , Hepatocitos/enzimología , Isocitrato Deshidrogenasa/genética , Hígado/enzimología , Hígado/patología , Animales , Neoplasias de los Conductos Biliares/genética , Diferenciación Celular , Colangiocarcinoma/genética , Humanos , Ratones , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...