Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 13(5)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35630202

RESUMEN

Artificial cilia-based microfluidics is a promising alternative in lab-on-a-chip applications which provides an efficient way to manipulate fluid flow in a microfluidic environment with high precision. Additionally, it can induce favorable local flows toward practical biomedical applications. The endowment of artificial cilia with their anatomy and capabilities such as mixing, pumping, transporting, and sensing lead to advance next-generation applications including precision medicine, digital nanofluidics, and lab-on-chip systems. This review summarizes the importance and significance of the artificial cilia, delineates the recent progress in artificial cilia-based microfluidics toward microfluidic application, and provides future perspectives. The presented knowledge and insights are envisaged to pave the way for innovative advances for the research communities in miniaturization.

2.
iScience ; 24(12): 103367, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34825146

RESUMEN

The artificial ciliary motion has been known not to be hydrodynamically optimal, limiting their associated applications in the microscale flow domain. One of the major hurdles of contemporary artificial cilia is its structural rigidity, which restricts their flexibility. To address this issue, this work proposed a shape-programmable artificial cilia design with distinctive polydimethylsiloxane (PDMS) and magnetic segments distributed throughout the structure, which provided precise control for time-spatial modulation of the whole artificial cilia structure under external magnetic actuation. For the fabrication of the proposed multi-segment artificial cilia, a facile microfabrication process with stepwise mold blocking followed by the PDMS and magnetic composite casting was adopted. The hydrodynamic analysis further elucidated that the proposed artificial cilia beating induced significant flow disturbance within the flow field, and the associated application was demonstrated through an efficient mixing operation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA