Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 25(4): 4061-4075, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28241614

RESUMEN

We propose a novel simple space division multiplexing (SDM) node which is rearrangeble nonblocking, and effectively utilizes enhanced network resources through SDM. The proposed node can reduce a number of ports of wavelength selective switches (WSSs) and a number of WSS modules by modifying conventional multi-stage switches and employing integrated multiple arrayed WSSs. We experimentally actualized the newly proposed node, and demonstrate wavelength, core, and direction switching functions based on 127-Gbps Dual Polarization Quadrature Phase Shift Keying (DP-QPSK) signals. We also confirm the feasibility of the proposed SDM node through SDM transmission experiments using a 40-km multicore fiber and a multicore amplifier.

2.
Chaos ; 10(3): 486-514, 2000 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12779401

RESUMEN

Recent progress on time-division multiplexed (TDM) and wavelength-division multiplexed (WDM) soliton transmission is described, in which dispersion management plays an important role in increasing the power margin and the dispersion tolerance. The characteristics of the dispersion-managed soliton are compared with those of return to zero and nonreturn to zero pulses. With a small dispersion swing, the system can still be described as an average soliton using the nonlinear Schrodinger equation, while with a large dispersion swing, the solitonlike steady-state pulse becomes a chirped Gaussian pulse, in which the governing equation is closer to a linear Schrodinger equation with a parabolic potential well. We describe an in-line modulation scheme for up to 80 Gbit/s per channel and its two channel WDM transmission over 10 000 km. Finally, we describe 640 Gbit/s (40 Gbit/sx16 channels) WDM soliton transmission over 1000 km with a dispersion-managed single-mode fiber. (c) 2000 American Institute of Physics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...