Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 89: 575-81, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27177458

RESUMEN

The aim of this work is to study the behavior of biodegradable sugar palm starch (SPS) based thermoplastic containing agar in the range of 10-40wt%. The thermoplastics were melt-mixed and then hot pressed at 140°C for 10min. SEM investigation showed good miscibility between SPS and agar. FT-IR analysis confirmed that SPS and agar were compatible and inter-molecular hydrogen bonds existed between them. Incorporation of agar increased the thermoplastic starch tensile properties (Young's modulus and tensile strength). The thermal stability and moisture uptake increased with increasing agar content. The present work shows that starch-based thermoplastics with 30wt% agar content have the highest tensile strength. Higher content of agar (40wt%) resulted to more rough cleavage fracture and slight decrease in the tensile strength. In conclusion, the addition of agar improved the thermal and tensile properties of thermoplastic SPS which widened the potential application of this eco-friendly material. The most promising applications for this eco-friendly material are short-life products such as packaging, container, tray, etc.


Asunto(s)
Arecaceae/química , Extractos Vegetales/química , Plásticos/química , Almidón/química , Agar/química , Extractos Vegetales/aislamiento & purificación , Espectroscopía Infrarroja por Transformada de Fourier , Almidón/aislamiento & purificación , Temperatura , Resistencia a la Tracción , Agua/química
2.
Carbohydr Polym ; 146: 36-45, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27112848

RESUMEN

The development and characterization of environmentally friendly bilayer films from sugar palm starch (SPS) and poly(lactic acid) (PLA) were conducted in this study. The SPS-PLA bilayer films and their individual components were characterized for their physical, mechanical, thermal and water barrier properties. Addition of 50% PLA layer onto 50% SPS layer (SPS50-PLA50) increased the tensile strength of neat SPS film from 7.74 to 13.65MPa but reduced their elongation at break from 46.66 to 15.53%. The incorporation of PLA layer significantly reduced the water vapor permeability as well as the water uptake and solubility of bilayer films which was attributed to the hydrophobic characteristic of the PLA layer. Furthermore, scanning electron microscopy (SEM) image of SPS50-PLA50 revealed lack of strong interfacial adhesion between the SPS and PLA. Overall, the incorporation of PLA layer onto SPS films enhances the suitability of SPS based films for food packaging.


Asunto(s)
Arecaceae/química , Embalaje de Alimentos , Poliésteres/química , Almidón/química , Polímeros , Resistencia a la Tracción
3.
J Food Sci Technol ; 53(1): 326-36, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26787952

RESUMEN

In this study, sugar palm starch (SPS) films were developed using glycerol (G), sorbitol (S) or their combination (GS) as plasticizers at the ratio of 15, 30 and 45 (wt)% using casting technique. The addition of plasticizers to SPS film-forming solutions helped to overcome the brittle and fragile nature of unplasticized SPS films. Increased plasticizer concentration resulted to an increase in film thickness, moisture content and solubility. On the contrary, density and water absorption of plasticized films decreased with increasing plasticizer concentration. Raising the plasticizer content from 15 to 45 % showed less effect on the moisture content and water absorption of S-plasticized films. Films containing glycerol and glycerol-sorbitol plasticizer (G, and GS) demonstrated higher moisture content, solubility and water absorption capacity compared to S-plasticized films. The results obtained in this study showed that plasticizer type and concentration significantly improves film properties and enhances their suitability for food packaging applications.

4.
Carbohydr Polym ; 92(2): 1711-6, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23399210

RESUMEN

In recent years, increasing environmental concerns focused greater attention on the development of biodegradable materials. A thermoplastic starch derived from bioresources, sugar palm tree was successfully developed in the presence of biodegradable glycerol as a plasticizer. Sugar palm starch (SPS) was added with 15-40 w/w% of glycerol to prepare workable bioplastics and coded as SPS/G15, SPS/G20, SPS/G30 and SPS/G40. The samples were characterized for thermal properties, mechanical properties and moisture absorption on exposure to humidity were evaluated. Morphological studies through scanning electron microscopy (SEM) were used to explain the observed mechanical properties. Generally, the addition of glycerol decrease the transition temperature of plasticized SPS. The mechanical properties of plasticized SPS increase with the increasing of glycerol but up to 30 w/w%. Meanwhile, the water absorption of plasticized SPS decrease with increasing of glycerol.


Asunto(s)
Magnoliopsida/química , Fenómenos Mecánicos , Plásticos/química , Almidón/química , Temperatura , Absorción , Glicerol/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA