Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 187: 114343, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763636

RESUMEN

Human breast milk promotes maturation of the infant gastrointestinal barrier, including the promotion of mucus production. In the quest to produce next generation infant milk formula (IMF), we have produced IMF by membrane filtration (MEM-IMF). With a higher quantity of native whey protein, MEM-IMF more closely mimics human breast milk than IMF produced using conventional heat treatment (HT-IMF). After a 4-week dietary intervention in young pigs, animals fed a MEM-IMF diet had a higher number of goblet cells, acidic mucus and mucin-2 in the jejunum compared to pigs fed HT-IMF (P < 0.05). In the duodenum, MEM-IMF fed pigs had increased trypsin activity in the gut lumen, increased mRNA transcript levels of claudin 1 in the mucosal scrapings and increased lactase activity in brush border membrane vesicles than those pigs fed HT-IMF (P < 0.05). In conclusion, MEM-IMF is superior to HT-IMF in the promotion of mucus production in the young gut.


Asunto(s)
Filtración , Fórmulas Infantiles , Moco , Animales , Fórmulas Infantiles/química , Moco/metabolismo , Porcinos , Proteína de Suero de Leche/metabolismo , Intestino Delgado/metabolismo , Tripsina/metabolismo , Humanos , Células Caliciformes/metabolismo , Claudina-1/metabolismo , Claudina-1/genética , Lactasa/metabolismo , Lactasa/genética , Mucina 2/metabolismo , Mucina 2/genética , Mucosa Intestinal/metabolismo , Duodeno/metabolismo , Yeyuno/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Proteínas de la Leche/metabolismo , Proteínas de la Leche/análisis
2.
Int J Food Sci Nutr ; 75(3): 293-305, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38225882

RESUMEN

Irritable bowel syndrome (IBS) is a condition affecting the digestive system and can be triggered by several different factors, including diet. To ease symptoms of IBS, a diet low in fermentable oligo-, di-, monosaccharides and polyols (FODMAPs) is often recommended. Pasta, as a staple food in the Western World, is naturally high in FODMAPs. This study investigates the impact of insoluble and soluble dietary fibre ingredients in low-FODMAPs pasta. The assessment included physicochemical, sensory, and nutritional quality. Soluble fibre strengthened gluten network, which caused a lower cooking loss and a lower release of sugars during in vitro starch digestion. Insoluble fibre interfered with the gluten network development to a higher extent causing a higher sugar release during digestion. This study reveals the most suitable fibre ingredients for the development of pasta with elevated nutritional value and sensory characteristics compared to commercial products on the market. This type of pasta has a high potential of being suitable for IBS patients.


Asunto(s)
Fibras de la Dieta , Fermentación , Síndrome del Colon Irritable , Valor Nutritivo , Fibras de la Dieta/análisis , Humanos , Síndrome del Colon Irritable/dietoterapia , Alimentos Fortificados/análisis , Monosacáridos/análisis , Polímeros , Glútenes/análisis , Almidón , Digestión , Oligosacáridos/análisis , Culinaria/métodos , Disacáridos/análisis
3.
Foods ; 13(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38254593

RESUMEN

Replacing eggs without influencing pound cakes' texture, appearance, and taste is challenging. Ovalbumin, the major protein in egg white, contributes to the structures of cakes by providing SH Groups that form a firm gel during baking. However, there is a shift in the consumers' behaviour regarding health, well-being, animal welfare standards, and environmental concerns. To meet upcoming trends and consumer needs, 102 egg replacement products were launched globally to the best of the authors' knowledge, with 20 of them advertised as suitable for baking applications. Ten locally available commercial egg replacers with a range of protein contents were chosen and applied in a pound cake model system to evaluate their functionality by evaluating cake and cake batter quality. Three different categories of egg replacements were chosen: replacers containing no protein (R1-R3), a low amount of protein (1-10 g/100 g; R4-R5), and a high amount of protein (>10 g/100 g; R6-R10). Those were compared to three control cakes containing powdered whole egg, fresh egg, and liquid whole egg. All the analysed egg replacers significantly differed from the control cakes, including low-protein egg replacement R4. Despite R4 achieving the highest specific volume (1.63 ± 0.07 mL/g) and comparable texture values, none of the examined egg replacers compared favourably with the egg control cakes regarding appearance, physical and textural properties, and nutritional value.

4.
J Agric Food Chem ; 71(28): 10543-10564, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37428126

RESUMEN

There is an urgent requirement to minimize food waste and create more sustainable food systems that address global increases in malnutrition and hunger. The nutritional value of brewers' spent grain (BSG) makes it attractive for upcycling into value-added ingredients rich in protein and fiber having a lower environmental impact than comparable plant-based ingredients. BSG is predictably available in large quantities globally and can therefore play a role in addressing hunger in the developing world via the fortification of humanitarian food aid products. Moreover, addition of BSG-derived ingredients can improve the nutritional profile of foods commonly consumed in more developed regions, which may aid in reducing the prevalence of dietary-related disease and mortality. Challenges facing the widespread utilization of upcycled BSG ingredients include regulatory status, variability of raw material composition, and consumer perception as low-value waste products; however, the rapidly growing upcycled food market suggests increasing consumer acceptability and opportunities for significant market growth via effective new product innovation and communication strategies.


Asunto(s)
Desnutrición , Eliminación de Residuos , Alimentos , Antioxidantes/análisis , Dieta Vegetariana , Grano Comestible/química
5.
Food Funct ; 14(15): 7082-7095, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37455535

RESUMEN

Fermentable oligo-, di-, monosaccharides and polyols (FODMAPs) are carbohydrates which can cause symptoms of irritable bowel syndrome (IBS). Cereal-based products are high in FODMAPs, as they are part of the carbohydrate fraction in flour. Low-FODMAP products are starch-based which leads to a low dietary fibre content. Hence, the fortification with dietary fibre ingredients low in FODMAPs is essential. This study reveals the impact of three different fibre ingredients, resistant starch, cellulose, and arabinoxylan, and their interactions with each other in a low-FODMAP biscuit model system using response surface methodology. All fibre ingredients have an affinity to water which was further increased by their coexistence in the model system. Fibersym RW affected the biscuit hardness by its morphology and potential to recrystallise leading to a maximum inclusion level of 40%. VITACEL L 600-30 also increased biscuit hardness due to its plasticising character leading to a maximum inclusion of 20%. AgriFiber BFG mainly impacted the colour of the product restricting its inclusion to 2.3%. Additionally, it reduced the degree of starch digestibility of the biscuit by the formation of a film imbedding the starch granules and reducing enzyme attack. This research provides an in-depth insight into the integration potential of these fibre ingredients into a low-FODMAP biscuit, their interactions within the system and inclusion levels which allow their coexistence.


Asunto(s)
Disacáridos , Oligosacáridos , Fermentación , Carbohidratos , Monosacáridos , Fibras de la Dieta , Almidón
6.
Foods ; 12(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37048370

RESUMEN

The process of upcycling and incorporating food by-products into food systems as functional ingredients has become a central focus of research. Barley rootlets (BR) are a by-product of the malting and brewing industries that can be valorised using lactic acid bacteria fermentation. This research investigates the effects of the inclusion of unfermented (BR-UnF), heat-sterilised (BR-Ster), and five fermented BR ingredients (using Weissella cibaria MG1 (BR-MG1), Leuconostoc citreum TR116 (BR-TR116), Lactiplantibacillus plantarum FST1.7 (BR-FST1.7), Lactobacillus amylovorus FST2.11 (BR-FST2.11), and Limosilactobacillus reuteri R29 (BR-R29) in bread. The antifungal compounds in BR ingredients and the impact of BR on dough rheology, gluten development, and dough mixing properties were analysed. Additionally, their effects on the techno-functional characteristics, in vitro starch digestibility, and sensory quality of bread were determined. BR-UnF showed dough viscoelastic properties and bread quality comparable to the baker's flour (BF). BR-MG1 inclusion ameliorated bread specific volume and reduced crumb hardness. Breads containing BR-TR116 had comparable bread quality to BF, while the inclusion of BR-R29 substantially slowed microbial spoilage. Formulations containing BR-FST2.11 and BR-FST1.7 significantly reduced the amounts of sugar released from breads during a simulated digestion and resulted in a sourdough-like flavour profile. This study highlights how BR fermentation can be tailored to achieve desired bread characteristics.

7.
Foods ; 12(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36900436

RESUMEN

Faba beans (Vicia faba L.) show exciting prospects as a sustainable source of protein and fibre, with the potential to transition to a more sustainable food production. This study reveals the compositional, nutritional and techno-functional characteristics of two protein isolates from faba beans (Vicia faba L.), a high-starch fraction and a high-fibre side-stream. During the analysis of those four ingredients, particular attention was paid to the isolates' protein profile and the side-streams' carbohydrate composition. The isoelectric precipitated protein isolate 1 showed a protein content of 72.64 ± 0.31% DM. It exhibited low solubility but superior digestibility and high foam stability. High foaming capacity and low protein digestibility were observed for protein isolate 2, with a protein content of 71.37 ± 0.93% DM. This fraction was highly soluble and consisted primarily of low molecular weight proteins. The high-starch fraction contained 83.87 ± 3.07% DM starch, of which about 66% was resistant starch. Over 65% of the high-fibre fraction was insoluble dietary fibre. The findings of this study provide a detailed understanding of different production fractions of faba beans, which is of great value for future product development.

8.
Foods ; 12(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36832874

RESUMEN

Plant protein sources, as a part of developing sustainable food systems, are currently of interest globally. Brewer's spent grain (BSG) is the most plentiful by-product of the brewing industry, representing ~85% of the total side streams produced. Although nutritionally dense, there are very few methods of upcycling these materials. High in protein, BSG can serve as an ideal raw material for protein isolate production. This study details the nutritional and functional characteristics of BSG protein isolate, EverPro, and compares these with the technological performance of the current gold standard plant protein isolates, pea and soy. The compositional characteristics are determined, including amino acid analysis, protein solubility, and protein profile among others. Related physical properties are determined, including foaming characteristics, emulsifying properties, zeta potential, surface hydrophobicity, and rheological properties. Regarding nutrition, EverPro meets or exceeds the requirement of each essential amino acid per g protein, with the exception of lysine, while pea and soy are deficient in methionine and cysteine. EverPro has a similar protein content to the pea and soy isolates, but far exceeds them in terms of protein solubility, with a protein solubility of ~100% compared to 22% and 52% for pea and soy isolates, respectively. This increased solubility, in turn, affects other functional properties; EverPro displays the highest foaming capacity and exhibits low sedimentation activity, while also possessing minimal gelation properties and low emulsion stabilising activity when compared to pea and soy isolates. This study outlines the functional and nutritional properties of EverPro, a brewer's spent grain protein, in comparison to commercial plant protein isolates, indicating the potential for the inclusion of new, sustainable plant-based protein sources in human nutrition, in particular dairy alternative applications.

9.
Eur Food Res Technol ; 249(1): 167-181, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36466321

RESUMEN

The non-alcoholic beer (NAB) sector has experienced steady growth in recent years, with breweries continuously seeking new ways to fulfil consumer demands. NAB can be produced by limited fermentation of non-Saccharomyces yeasts; however, beer produced in this manner is often critiqued for its sweet taste and wort-like off-flavours due to high levels of residual sugars and lack of flavour metabolites. The use of Lactobacillus in limited co-fermentation with non-Saccharomyces yeasts is a novel approach to produce NABs with varying flavour and aroma characteristics. In this study, lab-scale fermentations of Lachancea fermentati KBI 12.1 and Cyberlindnera subsufficiens C6.1 with Lactiplantibacillus plantarum FST 1.7 were performed and compared to a brewer's yeast, Saccharomyces cerevisiae WLP001. Fermentations were monitored for pH, TTA, extract reduction, alcohol production, and microbial cell count. The final beers were analysed for sugar and organic acid concentration, free amino nitrogen content (FAN), glycerol, and levels of volatile metabolites. The inability of the non-Saccharomyces yeasts to utilise maltotriose as an energy source resulted in extended fermentation times compared to S. cerevisiae WLP001. Co-fermentation of yeasts with lactic acid bacteria (LAB) resulted in a decreased pH, higher TTA and increased levels of lactic acid in the final beers. The overall acceptability of the NABs produced by co-fermentation was higher than or similar to that of the beers fermented with the yeasts alone, indicating that LAB fermentation did not negatively impact the sensory attributes of the beer. C. subsufficiens C6.1 and L. plantarum FST 1.7 NAB was characterised as fruity tasting with the significantly higher ester concentrations masking the wort-like flavours resulting from limited fermentation. NAB produced with L. fermentati KBI12.1 and L. plantarum FST1.7 had decreased levels of the undesirable volatile compound diacetyl and was described as 'fruity' and 'acidic', with the increased sourness masking the sweet, wort-like characteristics of the NAB. Moreover, this NAB was ranked as the most highly acceptable in the sensory evaluation. In conclusion, the limited co-fermentation of non-Saccharomyces yeasts with LAB is a promising strategy for the production of NAB.

10.
Foods ; 11(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36140887

RESUMEN

Several global health risks are related to our dietary lifestyle. As a consequence of the overconsumption of ultra-processed and highly digestible protein (150-200% of the recommended value), excess dietary proteins reach the colon, are hydrolysed to peptides and amino acids by bacterial proteases and fermented to various potentially toxic end products. A diet reformulation strategy with reduced protein content in food products appears to be the most effective approach. A potential approach to this challenge is to reduce food digestibility by introducing resistant protein into the diet that could positively influence human health and gut microbiome functionality. Resistant protein is a dietary constituent not hydrolysed by digestive enzymes or absorbed in the human small intestine. The chemical conformation and the amino acid composition strictly influence its structural stability and resistance to in vivo proteolysis and denaturation. Responding to the important gap in our knowledge regarding the digestibility performance of alternative proteins, we hypothesise that resistant proteins can beneficially alter food functionality via their role in improving metabolic properties and health benefits in human nutrition, similar to fibres and resistant starches. A multidisciplinary investigation of resistant protein will generate tremendous scientific impact for other interlinked societal, economic, technological and health and wellbeing aspects of human life.

11.
Foods ; 11(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35885256

RESUMEN

A milk-alternative produced from lentil protein isolate was fermented with three multifunctional strains of lactic acid bacteria, Leuconostoc citreum TR116, Leuconostoc pseudomesenteroides MP070, and Lacticaseibacillus paracasei FST 6.1. As a control, a commercial starter culture containing Streptococcus thermophilus was used. The metabolic performance of these strains and the techno-functional properties of the resulting yogurt alternatives (YA) were studied. Microbial growth was evaluated by cell counts, acidification, and carbohydrate metabolization. The structure of the YA was investigated by textural and rheological analyses and confocal laser scanning microscopy (CLSM). Production of antifungal compounds, the influence of fermentation on the content of FODMAPs, and typical metabolites were analyzed, and a sensory analysis was performed. The results revealed an exponential microbial growth in the lentil base substrate supported by typical acidification, which indicates a suitable environment for the selected strains. The resulting YA showed a gel-like texture typical for non-stirred yogurts, and high water holding capacity. The tested strains produced much higher levels of antifungal phenolic compounds than the commercial control and are therefore promising candidates as adjunct cultures for shelf-life extension. The Leuconostoc strains produced mannitol from fructose and could thus be applied in sugar-reduced YA. Preliminary sensory analysis showed high acceptance for YA produced with Lacticaseibacillus paracasei FST 6.1, and a yogurt-like flavor not statistically different to that produced by the control. Overall, each tested strain possessed promising functionalities with great potential for application in fermented plant-based dairy-alternatives.

12.
Foods ; 11(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35564030

RESUMEN

Pulse proteins are being increasingly investigated as nutritious and functional ingredients which could provide alternatives to animal proteins; however, pulse protein ingredients do not always meet the functionality requirements necessary for various applications. Consequently, enzymatic hydrolysis can be employed as a means of improving functional properties such as solubility, emulsifying, foaming, and gelling properties. This review aims to examine the current literature regarding modification of these properties with enzymatic hydrolysis. The effects of enzymatic hydrolysis on the functionality of pulse proteins generally varies considerably based on the enzyme, substrate, processing steps such as heat treatment, degree of hydrolysis, and pH. Differences in protease specificity as well as protein structure allow for a wide variety of peptide mixtures to be generated, with varying hydrophobic and electrostatic properties. Typically, the most significant improvements are seen when the original protein ingredient has poor initial functionality. Solubility is usually improved in the mildly acidic range, which may also correspond with improved foaming and emulsifying properties. More work should be carried out on the potential of enzymatic hydrolysis to modify gelation properties of pulse proteins, as the literature is currently lacking. Overall, careful selection of proteases and control of hydrolysis will be necessary to maximize the potential of enzymatic hydrolysis as a tool to improve pulse protein functionality and broaden the range of potential applications.

13.
Foods ; 11(7)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35407113

RESUMEN

The health benefits of fibre consumption are sound, but a more compressive understanding of the individual effects of different fibres is still needed. Arabinoxylan is a complex fibre that provides a wide range of health benefits strongly regulated by its chemical structure. Arabinoxylans can be found in various grains, such as wheat, barley, or corn. This review addresses the influence of the source of origin and extraction process on arabinoxylan structure. The health benefits related to short-chain fatty acid production, microbiota regulation, antioxidant capacity, and blood glucose response control are discussed and correlated to the arabinoxylan's structure. However, most studies do not investigate the effect of AX as a pure ingredient on food systems, but as fibres containing AXs (such as bran). Therefore, AX's benefit for human health deserves further investigation. The relationship between arabinoxylan structure and its physicochemical influence on cereal products (pasta, cookies, cakes, bread, and beer) is also discussed. A strong correlation between arabinoxylan's structural properties (degree of branching, solubility, and molecular mass) and its functionalities in food systems can be observed. There is a need for further studies that address the health implications behind the consumption of arabinoxylan-rich products. Indeed, the food matrix may influence the effects of arabinoxylans in the gastrointestinal tract and determine which specific arabinoxylans can be included in cereal and non-cereal-based food products without being detrimental for product quality.

14.
J Sci Food Agric ; 102(12): 5086-5097, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33792053

RESUMEN

BACKGROUND: Plant-based milk alternatives are becoming more popular. However, many are low in nutrients, particularly protein. More attention is being given to plant protein isolates / concentrates as potential ingredients in high-protein milk alternative formulations. RESULTS: The effect of lupin protein source on the physicochemical, functional, and nutritional characteristics of model milk alternatives was investigated. Milk alternatives were produced with either blue lupin or white lupin protein isolate, formulated to contain similar levels of protein and fat as low-fat cow's milk. Nutritional composition and predicted glycemic properties were measured. The effect of homogenization pressure on the physicochemical properties and storage stability was also assessed, with cow's milk and soy milk alternative analyzed for comparison. Both blue and white lupin milk alternatives were high in protein, low in fermentable oligo-, di- and monosaccharides, and polyols (FODMAPs), and had a low predicted glycemic index. White lupin milk alternatives had smaller particle size as well as greater stability, with less creaming compared to blue lupin milk alternatives, although the former showed slightly higher sediment layers. Increasing homogenization pressure from 180 to 780 bar resulted in smaller particle size, lower separation rate, and greater foamability for both blue and white lupin milk alternatives. White lupin milk alternative homogenized at 780 bar was found to be the most stable product, with a similar separation rate to cow's milk. CONCLUSIONS: These results indicate that protein source and processing can influence functional properties significantly along with product stability, and this is an important consideration when formulating high-protein milk alternatives. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Lupinus , Hipersensibilidad a la Leche , Sustitutos de la Leche , Leche de Soja , Animales , Bovinos , Emulsiones/análisis , Femenino , Leche/química , Sustitutos de la Leche/química
15.
Food Funct ; 12(22): 11262-11277, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34710210

RESUMEN

A diet low in fermentable oligo-, di-, monosaccharides and polyols (FODMAPs) is a successful therapeutic approach to alleviate symptoms of irritable bowel syndrome. However, wheat, as a fructan accumulating grain, is a major source of FODMAPs. Baker's yeast degrades fructans during fermentation, yet conventional whole wheat bread is often still high in FODMAPs. In this study, 96 yeast isolates from different environments were screened regarding their capability to metabolise FODMAPs. Two promising isolates were identified: Lachancea fermentati FST 5.1 and Cyberlindnera fabianii NTCyb, and their potential to produce low FODMAP whole wheat bread was compared to baker's yeast (Saccharomyces cerevisiae). A comprehensive characterisation of the carbohydrate metabolism by the different yeasts was achieved via HPAEC-PAD analysis of flour, doughs, and breads. L. fermentati FST 5.1 fermented fructans and excess fructose much more efficiently than baker's yeast and resulted in bread low in FODMAPs (below all cutoff levels known to induce symptoms). In contrast, C. fabianii NTCyb was unable to ferment FODMAPs in the wheat-dough-matrix. Furthermore, the yeasts' impact on the GC/MS-TOF profile of volatile aroma compounds, the sensory profile, the breads' ultrastructure, and the technological quality was examined. While C. fabianii NTCyb bread had poor technological and sensory attributes, the quality characteristics (volume, crumb structure, texture, sensory, aroma) of L. fermentati FST 5.1 bread were comparable to the baker's yeast bread. Ultimately, this study identified Lachancea fermentati FST 5.1 as an alternative to baker's yeast to produce low FODMAP whole wheat bread while maintaining optimal bread quality and consumer acceptance.


Asunto(s)
Pan/microbiología , Fermentación/fisiología , Monosacáridos/metabolismo , Saccharomycetales/metabolismo , Disacáridos/metabolismo , Polímeros/metabolismo , Saccharomyces cerevisiae/metabolismo , Triticum
16.
Foods ; 10(7)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34359509

RESUMEN

Recycling of by-products from the food industry has become a central part of research to help create a more sustainable future. Brewers' spent grain is one of the main side-streams of the brewing industry, rich in protein and fibre. Its inclusion in bread, however, has been challenging and requires additional processing. Fermentation represents a promising tool to elevate ingredient functionality and improve bread quality. Wheat bread was fortified with spray-dried brewers' spent grain (BSG) and fermented brewers' spent grain (FBSG) at two addition levels to achieve "source of fibre" and "high in fibre" claims according to EU regulations. The impact of BSG and FBSG on bread dough, final bread quality and nutritional value was investigated and compared to baker's flour (BF) and wholemeal flour (WMF) breads. The inclusion of BSG and FBSG resulted in a stronger and faster gluten development; reduced starch pasting capacity; and increased dough resistance/stiffness. However, fermentation improved bread characteristics resulting in increased specific volume, reduced crumb hardness and restricted microbial growth rate over time. Additionally, the inclusion of FBSG slowed the release in reducing sugars over time during in vitro starch digestion. Thus, fermentation of BSG can ameliorate bread techno-functional properties and improve nutritional quality of breads.

17.
Foods ; 10(8)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34441469

RESUMEN

The substitution of animal protein with proteins of plant origin is a viable way to decrease the negative impact caused by animal husbandry on the environment. Pulse consumption has been widely promoted as a nutritious contribution to protein supplementation. In this study, an emulsion of lentil (Lens culinaris) protein isolate is fermented with lactic acid bacteria (LAB) to manufacture a yoghurt alternative and the techno-functional properties compared to a dairy- and a soy-based product with similar protein contents. The yoghurt-like products are subjected to large and small deformation analysis, quantification of fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP), water holding capacity tests, protein profile analysis and the gel structure is visualised by confocal laser scanning microscopy (CLSM). The lentil yoghurt alternative shows good water holding capacity, high firmness and consistency values in large deformation analysis, with cohesiveness and viscosity not significantly different from that of dairy yoghurt. The high gel strength and rigidity of the lentil yoghurt gels measured by small deformation analysis is well-reflected in the dense protein matrix in the CLSM graphs. FODMAP content of the lentil yoghurt is very low, making it suitable for consumption by irritable bowel syndrome (IBS) patients. Our results show that lentil protein isolate is an excellent base material for producing a plant-based yoghurt alternative.

18.
Foods ; 10(6)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208463

RESUMEN

Barley is the most commonly used grain in the brewing industry for the production of beer-type beverages. This review will explore the extraction and application of proteins from barley, particularly those from brewers' spent grain, as well as describing the variety of proteins present. As brewers' spent grain is the most voluminous by-product of the brewing industry, the valorisation and utilisation of spent grain protein is of great interest in terms of sustainability, although at present, BSG is mainly sold cheaply for use in animal feed formulations. There is an ongoing global effort to minimise processing waste and increase up-cycling of processing side-streams. However, sustainability in the brewing industry is complex, with an innate need for a large volume of resources such as water and energy. In addition to this, large volumes of a by-product are produced at nearly every step of the process. The extraction and characterisation of proteins from BSG is of great interest due to the high protein quality and the potential for a wide variety of applications, including foods for human consumption such as bread, biscuits and snack-type products.

19.
Int J Food Microbiol ; 354: 109327, 2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34247022

RESUMEN

The species Leuconostoc citreum is often isolated from grain and vegetable fermentations such as sourdough, sauerkraut and kimchi. Lc. citreum has seen an increase in its use as a starter culture for various fermentations and food applications. The strain Lc. citreum TR116 has been applied previously in this laboratory aimed at sugar depletion through metabolism resulting in the reduction of fructose to mannitol, a polyol considered as a sweet carbohydrate. Besides reducing sugar, TR116 showed flavour modulating characteristics and contributes to the extension of microbial shelf life. In order to obtain a better understanding of this strain and to fully use its set of abilities, the genome of Lc. citreum TR116 was sequenced using the Illumina MiSeq, assembly with SPAdes and annotated by the Prokaryotic Genome Annotation Pipeline. Metabolic reconstruction was employed to elucidate carbohydrate, organic acid and amino acid metabolism in the strain. Of particular interest was the gene expression analysis ascertained the influence of fructose on the genes mdh and manX involved in the uptake of fructose and its conversion to mannitol. This investigation, the first in Lc. citreum, illustrates the metabolic processes involved in fermentation used by this strain and demonstrates that in the presence of fructose, expression of the genes mdh and manX is increased. The resulting transparency of the skill set of TR116 contributes highly to future functionalisation of food systems and food ingredients.


Asunto(s)
Fructosa , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Leuconostoc , Manitol , Fermentación , Fructosa/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genoma Bacteriano/genética , Leuconostoc/genética , Manitol/metabolismo
20.
Foods ; 10(6)2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34067239

RESUMEN

Brewer's spent grain (BSG) is the main side-stream of brewing. BSG is a potential source for nutritionally enriched cereal products due to its high content of fibre and protein. Two novel ingredients originating from BSG, EverVita FIBRA (EVF) and EverVita PRO (EVP), were incorporated into bread in two addition levels to achieve a 'source of fibre' (3 g/100 g) and a 'high in fibre' (6 g/100 g) nutrition claim for the breads. The impact of those two ingredients on dough and bread quality as well as on nutritional value was investigated and compared to baker's flour (C1) and wholemeal flour (C2) breads. The addition of EVF performed outstandingly well in the bread system achieving high specific volumes (3.72-4.66 mL/g), a soft crumb texture (4.77-9.03 N) and a crumb structure comparable with C1. Furthermore, EVF barely restricted gluten network development and did not influence dough rheology. EVP increased the dough resistance (+150%) compared to C1 which led to a lower specific volume (2.17-4.38 mL/g) and a harder crumb (6.25-36.36 N). However, EVP increased the nutritional value of the breads by increasing protein content (+36%) and protein quality by elevating the amount of indispensable amino acids. Furthermore, a decrease in predicted glycaemic index by 26% was achieved and microbial shelf life was extended by up to 3 days. Although both ingredients originated from the same BSG, their impact on bread characteristics and nutritional value varied. EVF and EVP can be considered as game-changers in the development of bread fortified with BSG, increasing nutritional value, and promoting sustainability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...