Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(7): 104914, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37315787

RESUMEN

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase (RTK) commonly targeted for inhibition by anticancer therapeutics. Current therapeutics target EGFR's kinase domain or extracellular region. However, these types of inhibitors are not specific for tumors over healthy tissue and therefore cause undesirable side effects. Our lab has recently developed a new strategy to regulate RTK activity by designing a peptide that specifically binds to the transmembrane (TM) region of the RTK to allosterically modify kinase activity. These peptides are acidity-responsive, allowing them to preferentially target acidic environments like tumors. We have applied this strategy to EGFR and created the PET1 peptide. We observed that PET1 behaves as a pH-responsive peptide that modulates the configuration of the EGFR TM through a direct interaction. Our data indicated that PET1 inhibits EGFR-mediated cell migration. Finally, we investigated the mechanism of inhibition through molecular dynamics simulations, which showed that PET1 sits between the two EGFR TM helices; this molecular mechanism was additionally supported by AlphaFold-Multimer predictions. We propose that the PET1-induced disruption of native TM interactions disturbs the conformation of the kinase domain in such a way that it inhibits EGFR's ability to send migratory cell signals. This study is a proof-of-concept that acidity-responsive membrane peptide ligands can be generally applied to RTKs. In addition, PET1 constitutes a viable approach to therapeutically target the TM of EGFR.


Asunto(s)
Regulación Alostérica , Membrana Celular , Receptores ErbB , Péptidos , Humanos , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/química , Receptores ErbB/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Fosforilación/efectos de los fármacos , Estructura Secundaria de Proteína/efectos de los fármacos , Proteínas Tirosina Quinasas Receptoras/metabolismo , Regulación Alostérica/efectos de los fármacos , Membrana Celular/química , Membrana Celular/metabolismo , Concentración de Iones de Hidrógeno , Péptidos/farmacología , Movimiento Celular/efectos de los fármacos , Dominios Proteicos/efectos de los fármacos , Antineoplásicos/farmacología
2.
Structure ; 31(6): 735-745.e2, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37075749

RESUMEN

Structures and dynamics of transmembrane (TM) receptor regions are key to understanding their signaling mechanism across membranes. Here we examine configurations of TM region dimers, assembled using the recent Martini 3 force field for coarse-grain (CG) molecular dynamics simulations. At first glance, our results show only a reasonable agreement with ab initio predictions using PREDDIMER and AlphaFold2 Multimer and with nuclear magnetic resonance (NMR)-derived structures. 5 of 11 CG TM structures are similar to the NMR structures (within <3.5 Å root-mean-square deviation [RMSD]) compared with 10 and 9 using PREDDIMER and AlphaFold2, respectively (with 8 structures of the later within 1.5 Å). Surprisingly, AlphaFold2 predictions are closer to NMR structures when the 2001 instead of 2020 database is used for training. The CG simulations reveal that alternative configurations of TM dimers readily interconvert with a predominant population. The implications for transmembrane signaling are discussed, including for the development of peptide-based pharmaceuticals.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos
3.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34445298

RESUMEN

Eph receptors are the largest family of receptor tyrosine kinases and by interactions with ephrin ligands mediate a myriad of processes from embryonic development to adult tissue homeostasis. The interaction of Eph receptors, especially at their transmembrane (TM) domains is key to understanding their mechanism of signal transduction across cellular membranes. We review the structural and functional aspects of EphA1/A2 association and the techniques used to investigate their TM domains: NMR, molecular modelling/dynamics simulations and fluorescence. We also introduce transmembrane peptides, which can be used to alter Eph receptor signaling and we provide a perspective for future studies.


Asunto(s)
Membrana Celular/metabolismo , Receptores de la Familia Eph/química , Receptores de la Familia Eph/metabolismo , Secuencia de Aminoácidos , Animales , Membrana Celular/química , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Dominios Proteicos/fisiología
4.
J Mol Biol ; 433(18): 167144, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34229012

RESUMEN

The EphA2 receptor is a promising drug target for cancer treatment, since EphA2 activation can inhibit metastasis and tumor progression. It has been recently described that the TYPE7 peptide activates EphA2 using a novel mechanism that involves binding to the single transmembrane domain of the receptor. TYPE7 is a conditional transmembrane (TM) ligand, which only inserts into membranes at neutral pH in the presence of the TM region of EphA2. However, how membrane interactions can activate EphA2 is not known. We systematically altered the sequence of TYPE7 to identify the binding motif used to activate EphA2. With the resulting six peptides, we performed biophysical and cell migration assays that identified a new potent peptide variant. We also performed a mutational screen that determined the helical interface that mediates dimerization of the TM domain of EphA2 in cells. These results, together with molecular dynamic simulations, allowed to elucidate the molecular mechanism that TYPE7 uses to activate EphA2, where the membrane peptide acts as a molecular clamp that wraps around the TM dimer of the receptor. We propose that this binding mode stabilizes the active conformation of EphA2. Our data, additionally, provide clues into the properties that TM ligands need to have in order to achieve activation of membrane receptors.


Asunto(s)
Melanoma/patología , Proteínas de la Membrana/metabolismo , Membranas/metabolismo , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Receptor EphA2/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Movimiento Celular , Humanos , Ligandos , Melanoma/metabolismo , Proteínas de la Membrana/química , Membranas/química , Simulación de Dinámica Molecular , Fragmentos de Péptidos/química , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Receptor EphA2/química , Homología de Secuencia , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...