Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1067189, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909416

RESUMEN

Rice is the staple food of more than half of the population of the world and India as well. One of the major constraints in rice production is frequent occurrence of pests and diseases and one of them is rice blast which often causes yield loss varying from 10 to 30%. Conventional approaches for disease assessment are time-consuming, expensive, and not real-time; alternately, sensor-based approach is rapid, non-invasive and can be scaled up in large areas with minimum time and effort.  In the present study, hyperspectral remote sensing for the characterization and severity assessment of rice blast disease was exploited. Field experiments were conducted with 20 genotypes of rice having sensitive and resistant cultivars grown under upland and lowland conditions at Almora, Uttarakhand, India. The severity of the rice blast was graded from 0 to 9 in accordance to International Rice Research Institute (IRRI).  Spectral observations in field were taken using a hand-held portable spectroradiometer in range of 350-2500 nm followed by spectral discrimination of different disease severity levels using Jeffires-Matusita (J-M) distance. Then, evaluation of 26 existing spectral indices (r≥0.8) was done corresponding to blast severity levels and linear regression prediction models were also developed. Further, the proposed ratio blast index (RBI) and normalized difference blast index (NDBI) were developed using all possible combinations of their correlations with severity level followed by their quantification to identify the best indices. Thereafter, multivariate models like support vector machine regression (SVM), partial least squares (PLS), random forest (RF), and multivariate adaptive regression spline (MARS) were also used to estimate blast severity. Jeffires-Matusita distance was separating almost all severity levels having values >1.92 except levels 4 and 5. The 26 prediction models were effective at predicting blast severity with R2 values from 0.48 to 0.85. The best developed spectral indices for rice blast were RBI (R1148, R1301) and NDBI (R1148, R1301) with R2 of 0.85 and 0.86, respectively. Among multivariate models, SVM was the best model with calibration R2=0.99; validation R2=0.94, RMSE=0.7, and RPD=4.10. The methodology developed paves way for early detection and large-scale monitoring and mapping using satellite remote sensors at farmers' fields for developing better disease management options.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 247: 119104, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33161273

RESUMEN

Accurate estimation of plant water status is a major factor in the decision-making process regarding general land use, crop water management and drought assessment. Visible-near infrared (VNIR) spectroscopy can provide an effective means for real-time and non-invasive monitoring of leaf water content (LWC) in crop plants. The current study aims to identify water absorption bands, indices and multivariate models for development of non-destructive water-deficit stress phenotyping protocols using VNIR spectroscopy and LWC estimated from 10 different rice genotypes. Existing spectral indices and band depths at water absorption regions were evaluated for LWC estimation. The developed models were found efficient in predicting LWC of the samples kept in the same environment with the ratio of performance to deviation (RPD) values varying from 1.49 to 3.05 and 1.66 to 2.63 for indices and band depths, respectively during validation. For identification of novel indices, ratio spectral indices (RSI) and normalised difference spectral indices (NDSI) were calculated in every possible band combination and correlated with LWC. The best spectral indices for estimating LWC of rice were RSI (R1830, R1834) and NDSI (R1830, R1834) with R2 greater than 0.90 during training and validation, respectively. Among the multivariate models, partial least squares regression (PLSR) provided the best results for prediction of LWC (RPD = 6.33 and 4.06 for training and validation, respectively). The approach developed in this study will also be helpful for high-throughput water-deficit stress phenotyping of other crops.


Asunto(s)
Oryza , Análisis de los Mínimos Cuadrados , Hojas de la Planta , Espectroscopía Infrarroja Corta , Agua
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 229: 117983, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31896051

RESUMEN

Identification and development of salinity tolerant genotypes and varieties are one of the promising ways to improve productivity of salt-affected soils. Alternate methods to achieve this are required as the conventional methods are time-consuming and often difficult to handle large population of genotypes. In this context, hyperspectral remote sensing could be one of the rapid, repeatable and reliable methods. The aim of the present study is to develop non-invasive high-throughput phenotyping techniques for salinity stress monitoring in rice. Spectral signature of leaf samples from 56 salinity stress tolerant and sensitive rice genotypes were collected at maximum tillering and flowering stage in visible and near-infrared (VNIR) domain. The spectral reflectance data and rice leaf potassium, sodium, calcium, magnesium, iron, manganese, zinc and copper concentration were analyzed for optimum index identification and multivariate model development. Novel hyperspectral indices sensitive to leaf nutrient status as affected by salinity stress were identified. The correlation coefficient during calibration and validation of the optimized indices varied between 0.34-0.63 and 0.36-0.66, respectively. To develop multivariate model, solo partial least square regression (PLSR), PLSR- and principal component analysis (PCA)-combined machine learning models were tested. The results revealed that the performance of PLSR-combined models was the best followed by PCA-based model while indices based model was found to be least accurate. The results obtained in the present study showed potential of hyperspectral remote sensing for non-destructive phenotyping of salinity stress.


Asunto(s)
Adaptación Fisiológica , Aprendizaje Automático , Oryza/fisiología , Fenotipo , Hojas de la Planta/fisiología , Análisis de Componente Principal , Estrés Salino , Análisis de los Mínimos Cuadrados , Espectroscopía Infrarroja Corta
4.
Artículo en Inglés | MEDLINE | ID: mdl-29126007

RESUMEN

In the present investigation, the changes in sucrose, reducing and total sugar content due to water-deficit stress in rice leaves were modeled using visible, near infrared (VNIR) and shortwave infrared (SWIR) spectroscopy. The objectives of the study were to identify the best vegetation indices and suitable multivariate technique based on precise analysis of hyperspectral data (350 to 2500nm) and sucrose, reducing sugar and total sugar content measured at different stress levels from 16 different rice genotypes. Spectral data analysis was done to identify suitable spectral indices and models for sucrose estimation. Novel spectral indices in near infrared (NIR) range viz. ratio spectral index (RSI) and normalised difference spectral indices (NDSI) sensitive to sucrose, reducing sugar and total sugar content were identified which were subsequently calibrated and validated. The RSI and NDSI models had R2 values of 0.65, 0.71 and 0.67; RPD values of 1.68, 1.95 and 1.66 for sucrose, reducing sugar and total sugar, respectively for validation dataset. Different multivariate spectral models such as artificial neural network (ANN), multivariate adaptive regression splines (MARS), multiple linear regression (MLR), partial least square regression (PLSR), random forest regression (RFR) and support vector machine regression (SVMR) were also evaluated. The best performing multivariate models for sucrose, reducing sugars and total sugars were found to be, MARS, ANN and MARS, respectively with respect to RPD values of 2.08, 2.44, and 1.93. Results indicated that VNIR and SWIR spectroscopy combined with multivariate calibration can be used as a reliable alternative to conventional methods for measurement of sucrose, reducing sugars and total sugars of rice under water-deficit stress as this technique is fast, economic, and noninvasive.


Asunto(s)
Adaptación Fisiológica , Oryza/fisiología , Estrés Fisiológico , Sacarosa/análisis , Azúcares/análisis , Agua/metabolismo , Análisis de los Mínimos Cuadrados , Análisis Multivariante , Fenotipo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA