Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Front Immunol ; 8: 449, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28507545

RESUMEN

Typical features of dyskeratosis congenita (DC) resulting from excessive telomere shortening include bone marrow failure (BMF), mucosal fragility, and pulmonary or liver fibrosis. In more severe cases, immune deficiency and recurring infections can add to disease severity. RTEL1 deficiency has recently been described as a major genetic etiology, but the molecular basis and clinical consequences of RTEL1-associated DC are incompletely characterized. We report our observations in a cohort of six patients: five with novel biallelic RTEL1 mutations p.Trp456Cys, p.Ile425Thr, p.Cys1244ProfsX17, p.Pro884_Gln885ins53X13, and one with novel heterozygous mutation p.Val796AlafsX4. The most unifying features were hypocellular BMF in 6/6 and B-/NK-cell lymphopenia in 5/6 patients. In addition, three patients with homozygous mutations p.Trp456Cys or p.Ile425Thr also suffered from immunodeficiency, cerebellar hypoplasia, and enteropathy, consistent with Hoyeraal-Hreidarsson syndrome. Chromosomal breakage resembling a homologous recombination defect was detected in patient-derived fibroblasts but not in hematopoietic compartment. Notably, in both cellular compartments, differential expression of 1243aa and 1219/1300aa RTEL1 isoforms was observed. In fibroblasts, response to ionizing irradiation and non-homologous end joining were not impaired. Telomeric circles did not accumulate in patient-derived primary cells and lymphoblastoid cell lines, implying alternative pathomechanisms for telomeric loss. Overall, RTEL1-deficient cells exhibited a phenotype of replicative exhaustion, spontaneous apoptosis and senescence. Specifically, CD34+ cells failed to expand in vitro, B-cell development was compromised, and T-cells did not proliferate in long-term culture. Finally, we report on the natural history and outcome of our patients. While two patients died from infections, hematopoietic stem cell transplantation (HSCT) resulted in sustained engraftment in two patients. Whether chemotherapy negatively impacts on the course and onset of other DC-related symptoms remains open at present. Early-onset lung disease occurred in one of our patients after HSCT. In conclusion, RTEL deficiency can show a heterogeneous clinical picture ranging from mild hypocellular BMF with B/NK cell lymphopenia to early-onset, very severe, and rapidly progressing cellular deficiency.

3.
Vaccine ; 33(15): 1880-9, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25701672

RESUMEN

Live attenuated vaccines are cost effective approach for preventing a broad range of infectious diseases, and thus are of great interest. However, immune-defects can predispose the patient to infections by the vaccine candidate itself. So far, few live vaccine candidates have been designed specifically for immune compromised individuals. Recently, we reported a new Salmonella Typhimurium Z234-vaccine strain (Periaswamy et al., PLoS ONE 2012;7:e45433), which was specifically attenuated in the NADPH-oxidase deficient host. In the present study, the Z234-vaccine strain was further engineered to express heterologous antigen (Vibrio cholerae toxin antigen subunit-B, i.e. CtxB) with the intention of creating a vector for simultaneous protection against Cholera and Salmonellosis. The primary aim of this study was to ensure the expression of CtxB antigen by the recombinant vaccine strain Z234-pMS101. The antigen CtxB was expressed through Z234 as a fusion protein with N-terminal signal sequence of Salmonella outer protein (SopE), an effector protein from Salmonella under the control of SopE promoter. The CtxB-expressing plasmid construct pMS101 (pM968-pSopE-ctxB) was found to be stable both in vitro and in vivo. In an oral mouse infection model, the vaccine strain Z234-pMS101 efficiently colonized the host gut. The extent of protection was confirmed after challenging the immunized hosts with live V. cholerae. Vaccinated mice showed reduced gut colonization by V. cholerae. Further assessment of immunological parameters supported the possibility of conferring effective immune response by Z234-pMS101 vaccine strain. Overall, the Z234-pMS101 vaccine strain showed potential as a promising polyvalent vaccine candidate to protect against S. Typhimurium and V. cholerae infection simultaneously.


Asunto(s)
Toxina del Cólera/inmunología , Vacunas contra el Cólera/inmunología , Cólera/prevención & control , Salmonelosis Animal/prevención & control , Vacunas contra la Salmonella/inmunología , Salmonella typhimurium/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Antígenos Heterófilos/genética , Antígenos Heterófilos/inmunología , Ciego/microbiología , Ciego/patología , Toxina del Cólera/genética , Modelos Animales de Enfermedad , Heces/microbiología , Vectores Genéticos , Inmunidad Celular , Huésped Inmunocomprometido , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/inmunología , Salmonella typhimurium/crecimiento & desarrollo , Vacunación , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Vibrio cholerae/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...