Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Gastroenterol Hepatol ; 13(5): 1530-1553.e4, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35032693

RESUMEN

BACKGROUND & AIMS: Pancreatic islet ß-cells are factories for insulin production; however, ectopic expression of insulin also is well recognized. The gallbladder is a next-door neighbor to the developing pancreas. Here, we wanted to understand if gallbladders contain functional insulin-producing cells. METHODS: We compared developing and adult mouse as well as human gallbladder epithelial cells and islets using immunohistochemistry, flow cytometry, enzyme-linked immunosorbent assays, RNA sequencing, real-time polymerase chain reaction, chromatin immunoprecipitation, and functional studies. RESULTS: We show that the epithelial lining of developing, as well as adult, mouse and human gallbladders naturally contain interspersed cells that retain the capacity to actively transcribe, translate, package, and release insulin. We show that human gallbladders also contain functional insulin-secreting cells with the potential to naturally respond to glucose in vitro and in situ. Notably, in a non-obese diabetic (NOD) mouse model of type 1 diabetes, we observed that insulin-producing cells in the gallbladder are not targeted by autoimmune cells. Interestingly, in human gallbladders, insulin splice variants are absent, although insulin splice forms are observed in human islets. CONCLUSIONS: In summary, our biochemical, transcriptomic, and functional data in mouse and human gallbladder epithelial cells collectively show the evolutionary and developmental similarities between gallbladder and the pancreas that allow gallbladder epithelial cells to continue insulin production in adult life. Understanding the mechanisms regulating insulin transcription and translation in gallbladder epithelial cells would help guide future studies in type 1 diabetes therapy.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Animales , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Células Epiteliales/metabolismo , Vesícula Biliar/metabolismo , Humanos , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Ratones Endogámicos NOD
2.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35086929

RESUMEN

In Drosophila melanogaster, loss of regenerative capacity in wing imaginal discs coincides with an increase in systemic levels of the steroid hormone ecdysone, a key coordinator of their developmental progression. Regenerating discs release the relaxin hormone Dilp8 (Drosophila insulin-like peptide 8) to limit ecdysone synthesis and extend the regenerative period. Here, we describe how regenerating tissues produce a biphasic response to ecdysone levels: lower concentrations of ecdysone promote local and systemic regenerative signaling, whereas higher concentrations suppress regeneration through the expression of broad splice isoforms. Ecdysone also promotes the expression of wingless during both regeneration and normal development through a distinct regulatory pathway. This dual role for ecdysone explains how regeneration can still be completed successfully in dilp8- mutant larvae: higher ecdysone levels increase the regenerative activity of tissues, allowing regeneration to reach completion in a shorter time. From these observations, we propose that ecdysone hormone signaling functions to coordinate regeneration with developmental progression.


Asunto(s)
Ecdisona/metabolismo , Regeneración/fisiología , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Hormonas Esteroides Gonadales/metabolismo , Discos Imaginales/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Larva/crecimiento & desarrollo , Neuronas/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Alas de Animales/metabolismo , Proteína Wnt1/metabolismo
3.
iScience ; 24(4): 102379, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33981968

RESUMEN

Dicer knockout mouse models demonstrated a key role for microRNAs in pancreatic ß-cell function. Studies to identify specific microRNA(s) associated with human (pro-)endocrine gene expression are needed. We profiled microRNAs and key pancreatic genes in 353 human tissue samples. Machine learning workflows identified microRNAs associated with (pro-)insulin transcripts in a discovery set of islets (n = 30) and insulin-negative tissues (n = 62). This microRNA signature was validated in remaining 261 tissues that include nine islet samples from individuals with type 2 diabetes. Top eight microRNAs (miR-183-5p, -375-3p, 216b-5p, 183-3p, -7-5p, -217-5p, -7-2-3p, and -429-3p) were confirmed to be associated with and predictive of (pro-)insulin transcript levels. Use of doxycycline-inducible microRNA-overexpressing human pancreatic duct cell lines confirmed the regulatory roles of these microRNAs in (pro-)endocrine gene expression. Knockdown of these microRNAs in human islet cells reduced (pro-)insulin transcript abundance. Our data provide specific microRNAs to further study microRNA-mRNA interactions in regulating insulin transcription.

4.
eNeuro ; 5(1)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29404402

RESUMEN

LIS1 mutations cause lissencephaly (LIS), a severe developmental brain malformation. Much less is known about its role in the mature nervous system. LIS1 regulates the microtubule motor cytoplasmic dynein 1 (dynein), and as LIS1 and dynein are both expressed in the adult nervous system, Lis1 could potentially regulate dynein-dependent processes such as axonal transport. We therefore knocked out Lis1 in adult mice using tamoxifen-induced, Cre-ER-mediated recombination. When an actin promoter was used to drive Cre-ER expression (Act-Cre-ER), heterozygous Lis1 knockout (KO) caused no obvious change in viability or behavior, despite evidence of widespread recombination by a Cre reporter three weeks after tamoxifen exposure. In contrast, homozygous Lis1 KO caused the rapid onset of neurological symptoms in both male and female mice. One tamoxifen-dosing regimen caused prominent recombination in the midbrain/hindbrain, PNS, and cardiac/skeletal muscle within a week; these mice developed severe symptoms in that time frame and were killed. A different tamoxifen regimen resulted in delayed recombination in midbrain/hindbrain, but not in other tissues, and also delayed the onset of symptoms. This indicates that Lis1 loss in the midbrain/hindbrain causes the severe phenotype. In support of this, brainstem regions known to house cardiorespiratory centers showed signs of axonal dysfunction in KO animals. Transport defects, neurofilament (NF) alterations, and varicosities were observed in axons in cultured DRG neurons from KO animals. Because no symptoms were observed when a cardiac specific Cre-ER promoter was used, we propose a vital role for Lis1 in autonomic neurons and implicate defective axonal transport in the KO phenotype.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Animales , Transporte Axonal/fisiología , Encéfalo/patología , Células Cultivadas , Femenino , Ganglios Espinales/crecimiento & desarrollo , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Masculino , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Enfermedades del Sistema Nervioso/metabolismo , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , Fenotipo
5.
J Endocrinol ; 202(1): 13-6, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19420008

RESUMEN

The treatment of diabetes by islet transplantation is presently hampered by the shortage of organ donors. The generation of insulin-producing cells is therefore a major objective in the long-term goal of curing diabetes. Alternative sources of pancreatic beta-cells include existing pancreatic cells, embryonic stem cells, and cells from other tissues such as liver. This commentary considers evidence for two new sources of beta-cells: intrahepatic biliary epithelial cells and gall bladder epithelium. These observations raise the possibility that a patient's own cells may be used as a source of insulin-producing cells for cell replacement in diabetes.


Asunto(s)
Diabetes Mellitus/terapia , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/trasplante , Animales , Sistema Biliar/citología , Sistema Biliar/embriología , Sistema Biliar/fisiología , Diferenciación Celular/fisiología , Transdiferenciación Celular/fisiología , Humanos , Trasplante de Islotes Pancreáticos/métodos , Hígado/embriología , Hígado/fisiología , Modelos Biológicos , Páncreas/embriología , Páncreas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...