Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Chem Zvesti ; : 1-14, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37362793

RESUMEN

In this study, we report elaboration of a thin film of CoOx on a low carbon unalloyed steel substrate by electrochemical route and the study of its electrocatalytic performances with respect to the evolution reaction of oxygen (OER) in NaOH medium. The elaborated deposits were well-characterized using X-ray diffraction. Kinetic and thermodynamic parameters such as exchange current density, Tafel slope, reaction order with respect to OH- ions and apparent activation energy were studied. The CoOx displays satisfactory OER performance in an alkaline medium, with a low overvoltage of 362 mV at 10 mA/cm2 and a Tafel slope of 81 mV/dec at 293 K. The apparent kinetic activation energy (= 29.79 kJ/mol) was similar to those obtained for the reported catalytic electrode materials. The O2 gas obtained on the cobalt oxide electrode was 2.865 mmol/s.cm2, which is 28 times higher than that obtained for the platinum electrode (0.102 mmol/s.cm2). Chronoamperometry demonstrates a better electrochemical stability under a polarization potential of 2 V in 1 M NaOH for nearly 25 h. The low cost, the high OER performance, as well as the good stability of the CoOx electrode make it a promising candidate for the industrial-scale water electrolysis.

2.
Environ Sci Pollut Res Int ; 29(8): 12237-12248, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34562219

RESUMEN

The discovery of the occurrence of inorganic pollutants in surface waters is identified in the system assessment quality. The most harmful elements are pesticides, persistent organic pollutants, pharmaceuticals, personal care products, and heavy metals are still dangerous to the environment due to their general uses. Chromate has the largest concentration compared to the other metals in the wastewater industries. This work evaluates the application of the spinel p-CoAl2O4 as a photocatalyst prepared by the nitrate synthesis process to reduce Cr(VI), a hazardous metal for the environment. The photocatalyst was characterized using thermal analysis (TG), X-ray diffraction, UV-diffuse reflectance spectroscopy, scanning electron microscopy, fluorescent X-ray, Fourier transform infrared spectroscopy, electrical conductivity, and photoelectrochemically. The results showed that the efficiency of optimum reduction of Cr(Vl) to Cr(IIl) photoreduction is more effective (77%) for pH = 3.6 than that at high pH values up to 8 (7%). Moreover, the effect of the hetero-system CoAl2O4/ZnO on photocatalytic efficiency was investigated. The photocatalytic activity increases up to 99% with 1 g L-1, a total catalyst dosage over the hetero-system CoAl2O4/ZnO at a ratio of 75%/25%. This data is better relative to CoAl2O4 or ZnO alone. The Cr(VI) photoreduction activity improvement was caused by the best separation and the photogeneration of electron-hole on the CoAl2O4/ZnO surfaces. Finally, the Lagergren pseudo-first-order and the Langmuir-Hinshelwood models fit well the experimental kinetics.


Asunto(s)
Óxido de Zinc , Óxido de Aluminio , Catálisis , Cromo , Cobalto , Óxido de Magnesio , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...