Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chall ; 8(2): 2300223, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38529414

RESUMEN

Solar power tower technology has strong potential among the other concentration solar power techniques for large power generation. Therefore, it is necessary to make a new and efficient power conversion system for utilizing the solar power tower system. In present research, a novel combined cycle is proposed to generate power for the application of the solar power tower. The pre-compression configuration of the Brayton cycle is used as a topping cycle in which helium is taken as the working fluid. The transcritical CO2 cycle is used as bottoming cycle for using the waste heat. The proposed system is investigated based on exergy, energy, and exergoenvironmental point of view using computational technique engineering equation solver. Also, the parametric analysis is carried out to check the impact of the different variables on the system performance. It is concluded that the overall plant's optimized thermal and exergy efficiencies are obtained as 31.59% and 33.12%, respectively, at 800 °C optimum temperature of combined cycle and 850 W m-2 of direct normal irradiation and 2.278 of compressor pressure ratio. However, exergetic stability factor and exergoenvironmental impact index are observed as 0.5952 and 0.6801 respectively. The present proposed system performs better than the previous studies with fewer components.

3.
Nanomaterials (Basel) ; 13(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36986025

RESUMEN

Nanofluids and nanotechnology are very important in enhancing heat transfer due to the thermal conductivity of their nanoparticles, which play a vital role in heat transfer applications. Researchers have used cavities filled with nanofluids for two decades to increase the heat-transfer rate. This review also highlights a variety of theoretical and experimentally measured cavities by exploring the following parameters: the significance of cavities in nanofluids, the effects of nanoparticle concentration and nanoparticle material, the influence of the inclination angle of cavities, heater and cooler effects, and magnetic field effects in cavities. The different shapes of the cavities have several advantages in multiple applications, e.g., L-shaped cavities used in the cooling systems of nuclear and chemical reactors and electronic components. Open cavities such as ellipsoidal, triangular, trapezoidal, and hexagonal are applied in electronic equipment cooling, building heating and cooling, and automotive applications. Appropriate cavity design conserves energy and produces attractive heat-transfer rates. Circular microchannel heat exchangers perform best. Despite the high performance of circular cavities in micro heat exchangers, square cavities have more applications. The use of nanofluids has been found to improve thermal performance in all the cavities studied. According to the experimental data, nanofluid use has been proven to be a dependable solution for enhancing thermal efficiency. To improve performance, it is suggested that research focus on different shapes of nanoparticles less than 10 nm with the same design of the cavities in microchannel heat exchangers and solar collectors.

4.
Bioresour Technol ; 377: 128952, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36965587

RESUMEN

Food waste (FW) is a severe environmental and social concern that today's civilization is facing. Therefore, it is necessary to have an efficient and sustainable solution for managing FW bioprocessing. Emerging technologies like the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning (ML) are critical to achieving this, in which IoT sensors' data is analyzed using AI and ML techniques, enabling real-time decision-making and process optimization. This work describes recent developments in valorizing FW using novel tactics such as the IoT, AI, and ML. It could be concluded that combining IoT, AI, and ML approaches could enhance bioprocess monitoring and management for generating value-added products and chemicals from FW, contributing to improving environmental sustainability and food security. Generally, a comprehensive strategy of applying intelligent techniques in conjunction with government backing can minimize FW and maximize the role of FW in the circular economy toward a more sustainable future.


Asunto(s)
Eliminación de Residuos , Administración de Residuos , Alimentos , Inteligencia Artificial
5.
Heliyon ; 9(3): e14216, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36923846

RESUMEN

An energy audit (EA) is a crucial step in boosting factory energy efficiency and obtaining certification for cleaner manufacturing. The results of a preliminary energy audit carried out at a sizable industrial facility in Jordan that creates some of the most well-known foods in the Middle East are presented in this study. The monthly demand of the factory for diesel ranged from 75,251.545 to 166,666.67 L. The factory energy model which is used to examine the impact of various energy-saving practices on the factory's primary energy consumption, was developed with the help of the energy audit. It has been established that optimizing the factory's energy use and the boiler systems' performance with regards to diesel consumption can withstand an expected monthly financial savings of 14205.85 Jordanian Dinar (JD). This has allowed a reduction in energy use of up to 18%. The CO2 harmful emissions were also decreased. Additionally, it is estimated that switching from the proposed motors to energy-efficient motors will cost less overall over time, saving around 3472.314 JD/month or 0.33576/year on average. Moreover, it was discovered that a total of 772.82021 Ton CO2/year emissions may be avoided each year.

6.
Nanomaterials (Basel) ; 12(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36080114

RESUMEN

Recently, phase change materials (PCMs) have gained great attention from engineers and researchers due to their exceptional properties for thermal energy storing, which would effectively aid in reducing carbon footprint and support the global transition of using renewable energy. The current research attempts to enhance the thermal performance of a shell-and-tube heat exchanger by means of using PCM and a modified tube design. The enthalpy-porosity method is employed for modelling the phase change. Paraffin wax is treated as PCM and poured within the annulus; the annulus comprises a circular shell and a fined wavy (trefoil-shaped) tube. In addition, copper nanoparticles are incorporated with the base PCM to enhance the thermal conductivity and melting rate. Effects of many factors, including nanoparticle concentration, the orientation of the interior wavy tube, and the fin length, were examined. Results obtained from the current model imply that Cu nanoparticles added to PCM materials improve thermal and melting properties while reducing entropy formation. The highest results (27% decrease in melting time) are obtained when a concentration of nanoparticles of 8% is used. Additionally, the fins' location is critical because fins with 45° inclination could achieve a 50% expedition in the melting process.

7.
Bioresour Technol ; 363: 127958, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36113822

RESUMEN

Every day, a large amount of food waste (FW) is released into the environment, causing financial loss and unpredictable consequences in the world, highlighting the urgency of finding a suitable approach to treating FW. As moisture content makes up 75% of the FW, hydrothermal carbonization (HTC) is a beneficial process for the treatment of FW since it does not require extensive drying. Moreover, the process is considered favorable for carbon sequestration to mitigate climate change in comparison with other processes because the majority of the carbon in FW is integrated into hydrochar. In this work, the reaction mechanism and factors affecting the HTC of FW are scrutinized. Moreover, the physicochemical properties of products after the HTC of FW are critically presented. In general, HTC of FW is considered a promising approach aiming to attain simultaneously-two core benefits on economy and energy in the sustainable development strategy.


Asunto(s)
Alimentos , Eliminación de Residuos , Biocombustibles , Carbono/química , Temperatura
8.
Bioresour Technol ; 363: 127970, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36122843

RESUMEN

Anaerobic digestion (AD) is a viable and cost-effective method for converting organic waste into usable renewable energy. The efficiency of organic waste digestion, nonetheless, is limited due to inhibition and instability. Accordingly, biochar is an effective method for improving the efficiency of AD by adsorbing inhibitors, promoting biogas generation and methane concentration, maintaining process stability, colonizing microorganisms selectively, and mitigating the inhibition of volatile fatty acids and ammonia. This paper reviews the features of crop waste-derived biochar and its application in AD systems. Four critical roles of biochar in AD systems were identified: maintaining pH stability, promoting hydrolysis, enhancing the direct interspecies electron transfer pathway, and supporting microbial development. This work also highlights that the interaction between biochar dose, amount of organic component in the substrate, and inoculum-to-substrate ratio should be the focus of future research before deploying commercial applications.


Asunto(s)
Biocombustibles , Reactores Biológicos , Amoníaco , Anaerobiosis , Carbón Orgánico , Digestión , Ácidos Grasos Volátiles , Metano
9.
Chemosphere ; 307(Pt 1): 135762, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35863408

RESUMEN

Water quality (WQ) analysis is a critical stage in water resource management and should be handled immediately in order to control pollutants that could have a negative influence on the ecosystem. The dramatic increase in population, the use of fertilizers and pesticides, and the industrial revolution have resulted in severe effects on the WQ environment. As a result, the prediction of WQ greatly helped to monitor water pollution. Accurate prediction of WQ is the foundation of managing water environments and is of high importance for protecting water environment. WQ data presents in the form of multi-variate time-sequence dataset. It is clear that the accuracy of predicting WQ will be enhanced when the multi-variate relation and time sequence dataset of WQ are fully utilized. This article presents the Water Quality Prediction utilising Sparrow Search Optimization with Hybrid Long Short-Term Memory (WQP-SSHLSTM) model. The presented WQP-SSHLSTM model intends to examine the data and classify WQ into distinct classes. To achieve this, the presented WQP-SSHLSTM model undergoes data scaling process to scale the input data into uniform format. Followed by, a hybrid long short-term memory-deep belief network (LSTM-DBN) technique is employed for the recognition and classification of WQ. Moreover, Sparrow search optimization algorithm (SSOA) is utilized as a hyperparameter optimizer of the proposed DBN-LSTM model. For demonstrating the enhanced outcomes of the presented WQP-SSHLSTM model, a sequence of experiments has been performed and the outcomes are reviewed under distinct prospects. The WQP-SSHLSTM model has achieved 99.84 percent accuracy, which is the maximum attainable. The simulation outcomes ensured the enhanced outcomes of the WQP-SSHLSTM model on recent methods.


Asunto(s)
Contaminantes Ambientales , Plaguicidas , Gorriones , Animales , Ecosistema , Fertilizantes , Memoria a Corto Plazo , Calidad del Agua
10.
Sci Rep ; 11(1): 22535, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795390

RESUMEN

Carbon fiber-reinforced polymer (CFRP) easily realizes the integrated manufacturing of components with high specific strength and stiffness, and it has become the preferred material in the aerospace field. Grinding is the key approach to realize precision parts and matching the positioning surface for assembly and precision. Hygroscopicity limits the application of flood lubrication in CFRP grinding, and dry grinding leads to large force, surface deterioration, and wheel clogging. To solve the above technical bottleneck, this study explored the grindability and frictional behavior of CNT biological lubricant MQL through grinding experiments and friction-wear tests. Results showed that the CNT biological lubricant reduced the friction coefficient by 53.47% compared with dry condition, showing optimal and durable antifriction characteristics. The new lubrication was beneficial to suppressing the removal of multifiber block debris, tensile fracture, and tensile-shear fracture, with the advantages of tribological properties and material removal behavior, the tangential and normal grinding force, and the specific grinding energy were reduced by 40.41%, 31.46%, and 55.78%, respectively, compared with dry grinding. The proposed method reduced surface roughness and obtained the optimal surface morphology by preventing burrs, fiber pull-out, and resin smearing, and wheel clogging was prevented by temperature reduction and lubricating oil film formation. Sa and Sq of the CNT biological lubricant were reduced by 8.4% and 7.9%, respectively, compared with dry grinding. This study provides a practical basis for further application of CNT biological lubricant in CFRP grinding.

11.
Int J Adv Manuf Technol ; 117(9-10): 2565-2600, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34465936

RESUMEN

Cutting fluid has cooling and lubricating properties and is an important part of the field of metal machining. Owing to harmful additives, base oils with poor biodegradability, defects in processing methods, and unreasonable emissions of waste cutting fluids, cutting fluids have serious pollution problems, which pose challenges to global carbon emissions laws and regulations. However, the current research on cutting fluid and its circulating purification technique lacks systematic review papers to provide scientific technical guidance for actual production. In this study, the key scientific issues in the research achievements of eco-friendly cutting fluid and waste fluid treatment are clarified. First, the preparation and mechanism of organic additives are summarized, and the influence of the physical and chemical properties of vegetable base oils on lubricating properties is analyzed. Then, the process characteristics of cutting fluid reduction supply methods are systematically evaluated. Second, the treatment of oil mist and miscellaneous oil, the removal mechanism and approach of microorganisms, and the design principles of integrated recycling equipment are outlined. The conclusion is concluded that the synergistic effect of organic additives, biodegradable vegetable base oils and recycling purification effectively reduces the environmental pollution of cutting fluids. Finally, in view of the limitations of the cutting fluid and its circulating purification technique, the prospects of amino acid additive development, self-adapting jet parameter supply system, matching mechanism between processing conditions and cutting fluid are put forward, which provides the basis and support for the engineering application and development of cutting fluid and its circulating purification.

12.
Data Brief ; 26: 104547, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31667306

RESUMEN

This article presents the dataset generated during the process of enhancing the thermophysical properties of nanofluid mixture through fuzzy logic based-modelling and particle swarm optimization (PSO) algorithm. The details of fuzzy model and optimization phases were discussed in our work entitled "Fuzzy modeling and optimization for experimental thermophysical properties of water and ethylene glycol mixture for Al2O3 and TiO2 based nanofluids" (Said et al., 2019). In (Said et al., 2019), the detail of the numerical data has not been clearly presented. However, in this article the inputs' data values for the density, viscosity, and thermal conductivity, used for training and testing of the fuzzy model, have been mentioned which is very essential if the model has to be rebuilt again. Furthermore, the resulting data variation of the cost function for the 100 runs during the optimization process that had not been presented in (Said et al., 2019) is presented in this work. These data sets can be used as references to analyze the data resulting from any other optimization technique. The datasets are provided in the supplementary materials in Tables 1-4.

13.
J Colloid Interface Sci ; 520: 50-57, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29529460

RESUMEN

Carbon-based nanofluids are viewed as promising thermal fluids for heat transfer applications. However, other properties, such as electrical conductivity and electrochemical behavior, are usually overlooked and rarely investigated despite their importance for the overall performance characterization of a given application. In this study, we synthesized PAN-based carbon nanofibers (CNF) by electrospinning, and characterized them using electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and thermogravimetric analysis. Thermoelectrical and electrochemical measurements were carried out on nanofluids. We found that, although CNF nanofluids exhibit good thermal and electrical properties with a negligible corrosive effect, the suspensions tend to sediment within a few days. However, acid treatment of CNF (F-CNF), which resulted in the shortening of the fibers and the appearance of surface-oxygenated species, made F-CNF-based nanofluids exhibit superior stability in water that extended for more than 90 days, with consistent and superior thermal and electrical properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...