Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 121(4): 867-875, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28005377

RESUMEN

Self-assembly in aqueous solutions of an amphiphilic comblike polyelectrolyte (80C12) that consists of a polystyrene (PS) backbone onto which quaternary ammonium pendant moieties have been grafted has been investigated by light scattering and cryo-transmission electron microscopy measurements in the presence of KCl and methylviologen dication (MV2+) under conditions mimicking those for electrochemical measurements. Polymer chains self-assemble within branched cylindrical micelles that display viscoelastic properties, characterized by a relaxation time of 4 s. To tune this time, 80C12 was mixed with a polyoxyethylene nonionic surfactant (Brij C12E10). Relatively increasing the amount of the latter leads to a decrease in the relaxation time of the 80C12 solution. Correlatively, electrochemical experiments with a rotating disk electrode show a transition of the mass transport rate, which deviates from the classical Newtonian behavior in the same velocity domain. This result generalizes what has been already observed with solutions of linear polymers of high molecular weight and wormlike micelles based on surfactants subjected to elongational deformations. Moreover, the critical times derived from rheological and electrochemical experiments display the same trend.

2.
Anal Chim Acta ; 797: 30-9, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-24050667

RESUMEN

Boron-doped diamond (BDD) films are excellent electrode materials, whose electrochemical activity for some analytes can be tuned by controlling their surface termination, most commonly either to predominantly hydrogen or oxygen. This tuning can be accomplished by e.g. suitable cathodic or anodic electrochemical pretreatments. Recently, it has been shown that amorphous carbon nitride (a-CNx) films may present electrochemical characteristics similar to those of BDD, including the influence of surface termination on their electrochemical activity toward some analytes. In this work, we report for the first time a complete electroanalytical method using an a-CNx electrode. Thus, an a-CNx film deposited on a stainless steel foil by DC magnetron sputtering is proposed as an alternative electrode for the simultaneous determination of dopamine (DA) and ascorbic acid (AA) in synthetic biological samples by square-wave voltammetry. The obtained results are compared with those attained using a BDD electrode. For both electrodes, a same anodic pretreatment in 0.1 mol L(-1) KOH was necessary to attain an adequate and equivalent separation of the DA and AA oxidation potential peaks of about 330 mV. The detection limits obtained for the simultaneous determination of these analytes using the a-CNx electrode were 0.0656 µmol L(-1) for DA and 1.05 µmol L(-1) for AA, whereas with the BDD electrode these values were 0.283 µmol L(-1) and 0.968 µmol L(-1), respectively. Furthermore, the results obtained in the analysis of the analytes in synthetic biological samples were satisfactory, attesting the potential application of the a-CNx electrode in electroanalysis.


Asunto(s)
Ácido Ascórbico/sangre , Ácido Ascórbico/líquido cefalorraquídeo , Dopamina/sangre , Dopamina/líquido cefalorraquídeo , Técnicas Electroquímicas/instrumentación , Nitrilos/química , Boro/química , Diamante/química , Electrodos , Humanos , Límite de Detección
3.
J Phys Chem B ; 110(43): 21710-8, 2006 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-17064130

RESUMEN

Cylindrical micelles prepared in aqueous solutions from cationic surfactants octadecyl trimethylammonium (OTA+) or cetyltrimethylammonium (CTA+) and parachlorobenzoate (PCB) counterion were successfully imaged after evaporation of water using tapping mode atomic force microscopy (TM-AFM) onto very smooth gold and glass substrates. With the help of the obtained topography AFM images, it was shown that the micellar structures are preserved on gold substrates after evaporation of the solvent despite the new set of stresses due mainly to capillary forces and dehydration. The influence of the substrate on the resulting micellar morphology observed in air was investigated for these two materials: cylindrical micelles were evidenced as loosely adherent on gold surface in the presence of parachlorobenzoate (PCB) and identical, geometrically speaking, to those known to exist in aqueous solutions. In this situation, topographic AFM images allowed us to determine accurately their geometrical characteristics such as diameter and length in the nanometer range. On the other hand, AFM images obtained in air on glass surfaces revealed micellar structures that are different from those existing in the bulk of the solution. Indeed, bilayer-type micelles with a thickness close to twice the surfactant monomer expected length were observed, indicating that the well-established and strong influence of glass on micelle geometry at the glass/solution interface is maintained after evaporation of water. These results have been analyzed on the basis of positive charge of gold deduced from electrochemical impedance spectroscopy (EIS) and Raman spectroscopy measurements on one hand and of the negative charge of glass on the other hand. Although these results appeal to new theoretical considerations dealing with dynamics of evaporation of micellar solution drops and/or with counterion contributions to macromolecular interactions in aqueous solutions and in air, this new AFM imaging method appears to be the more adequate one to image and measure the micelles formed in the presence of water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...