Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
SLAS Technol ; : 100147, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38796034

RESUMEN

The 2019 novel coronavirus (renamed SARS-CoV-2, and generally referred to as the COVID-19 virus) has spread to 184 countries with over 1.5 million confirmed cases. Such a major viral outbreak demands early elucidation of taxonomic classification and origin of the virus genomic sequence, for strategic planning, containment, and treatment. The emerging global infectious COVID-19 disease by novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) presents critical threats to global public health and the economy since it was identified in late December 2019 in China. The virus has gone through various pathways of evolution. Due to the continued evolution of the SARS-CoV-2 pandemic, researchers worldwide are working to mitigate, suppress its spread, and better understand it by deploying deep learning and machine learning approaches. In a general computational context for biomedical data analysis, DNA sequence classification is a crucial challenge. Several machine and deep learning techniques have been used in recent years to complete this task with some success. The classification of DNA sequences is a key research area in bioinformatics as it enables researchers to conduct genomic analysis and detect possible diseases. In this paper, three state-of-the-art deep learning-based models are proposed using two DNA sequence conversion methods. We also proposed a novel multi-transformer deep learning model and pairwise features fusion technique for DNA sequence classification. Furthermore, deep features are extracted from the last layer of the multi-transformer and used in machine-learning models for DNA sequence classification. The k-mer and one-hot encoding sequence conversion techniques have been presented. The proposed multi-transformer achieved the highest performance in COVID DNA sequence classification. Automatic identification and classification of viruses are essential to avoid an outbreak like COVID-19. It also helps in detecting the effect of viruses and drug design.

2.
PeerJ Comput Sci ; 10: e1982, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660162

RESUMEN

Maternal healthcare is a critical aspect of public health that focuses on the well-being of pregnant women before, during, and after childbirth. It encompasses a range of services aimed at ensuring the optimal health of both the mother and the developing fetus. During pregnancy and in the postpartum period, the mother's health is susceptible to several complications and risks, and timely detection of such risks can play a vital role in women's safety. This study proposes an approach to predict risks associated with maternal health. The first step of the approach involves utilizing principal component analysis (PCA) to extract significant features from the dataset. Following that, this study employs a stacked ensemble voting classifier which combines one machine learning and one deep learning model to achieve high performance. The performance of the proposed approach is compared to six machine learning algorithms and one deep learning algorithm. Two scenarios are considered for the experiments: one utilizing all features and the other using PCA features. By utilizing PCA-based features, the proposed model achieves an accuracy of 98.25%, precision of 99.17%, recall of 99.16%, and an F1 score of 99.16%. The effectiveness of the proposed model is further confirmed by comparing it to existing state of-the-art approaches.

3.
Sci Rep ; 14(1): 3570, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347011

RESUMEN

White blood cells (WBCs) play a vital role in immune responses against infections and foreign agents. Different WBC types exist, and anomalies within them can indicate diseases like leukemia. Previous research suffers from limited accuracy and inflated performance due to the usage of less important features. Moreover, these studies often focus on fewer WBC types, exaggerating accuracy. This study addresses the crucial task of classifying WBC types using microscopic images. This study introduces a novel approach using extensive pre-processing with data augmentation techniques to produce a more significant feature set to achieve more promising results. The study conducts experiments employing both conventional deep learning and transfer learning models, comparing performance with state-of-the-art machine and deep learning models. Results reveal that a pre-processed feature set and convolutional neural network classifier achieves a significantly better accuracy of 0.99. The proposed method demonstrates superior accuracy and computational efficiency compared to existing state-of-the-art works.


Asunto(s)
Leucemia , Leucocitos , Humanos , Redes Neurales de la Computación , Algoritmos
4.
Front Oncol ; 14: 1335740, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38390266

RESUMEN

Brain tumor classification is one of the most difficult tasks for clinical diagnosis and treatment in medical image analysis. Any errors that occur throughout the brain tumor diagnosis process may result in a shorter human life span. Nevertheless, most currently used techniques ignore certain features that have particular significance and relevance to the classification problem in favor of extracting and choosing deep significance features. One important area of research is the deep learning-based categorization of brain tumors using brain magnetic resonance imaging (MRI). This paper proposes an automated deep learning model and an optimal information fusion framework for classifying brain tumor from MRI images. The dataset used in this work was imbalanced, a key challenge for training selected networks. This imbalance in the training dataset impacts the performance of deep learning models because it causes the classifier performance to become biased in favor of the majority class. We designed a sparse autoencoder network to generate new images that resolve the problem of imbalance. After that, two pretrained neural networks were modified and the hyperparameters were initialized using Bayesian optimization, which was later utilized for the training process. After that, deep features were extracted from the global average pooling layer. The extracted features contain few irrelevant information; therefore, we proposed an improved Quantum Theory-based Marine Predator Optimization algorithm (QTbMPA). The proposed QTbMPA selects both networks' best features and finally fuses using a serial-based approach. The fused feature set is passed to neural network classifiers for the final classification. The proposed framework tested on an augmented Figshare dataset and an improved accuracy of 99.80%, a sensitivity rate of 99.83%, a false negative rate of 17%, and a precision rate of 99.83% is obtained. Comparison and ablation study show the improvement in the accuracy of this work.

5.
PeerJ Comput Sci ; 10: e1722, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38196956

RESUMEN

Mobile app stores, such as Google Play, have become famous platforms for practically all types of software and services for mobile phone users. Users may browse and download apps via app stores, which also help developers monitor their apps by allowing users to rate and review them. App reviews may contain the user's experience, bug details, requests for additional features, or a textual rating of the app. These ratings can be frequently biased due to inadequate votes. However, there are significant discrepancies between the numerical ratings and the user reviews. This study uses a transfer learning approach to predict the numerical ratings of Google apps. It benefits from user-provided numeric ratings of apps as the training data and provides authentic ratings of mobile apps by analyzing users' reviews. A transfer learning-based model ELMo is proposed for this purpose which is based on the word vector feature representation technique. The performance of the proposed model is compared with three other transfer learning and five machine learning models. The dataset is scrapped from the Google Play store which extracts the data from 14 different categories of apps. First, biased and unbiased user rating is segregated using TextBlob analysis to formulate the ground truth, and then classifiers prediction accuracy is evaluated. Results demonstrate that the ELMo classifier has a high potential to predict authentic numeric ratings with user actual reviews.

6.
PeerJ Comput Sci ; 9: e1493, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077551

RESUMEN

The COVID-19 pandemic caused millions of infections and deaths globally requiring effective solutions to fight the pandemic. The Internet of Things (IoT) provides data transmission without human intervention and thus mitigates infection chances. A road map is discussed in this study regarding the role of IoT applications to combat COVID-19. In addition, a real-time solution is provided to identify and monitor COVID-19 patients. The proposed framework comprises data collection using IoT-based devices, a health or quarantine center, a data warehouse for artificial intelligence (AI)-based analysis, and healthcare professionals to provide treatment. The efficacy of several machine learning models is also analyzed for the prediction of the severity level of COVID-19 patients using real-time IoT data and a dataset named 'COVID Symptoms Checker'. The proposed ensemble model combines random forest and extra tree classifiers using a soft voting criterion and achieves superior results with a 0.922 accuracy score. The use of IoT applications is found to support medical professionals in investigating the features of the contagious disease and support managing the COVID pandemic more efficiently.

7.
Digit Health ; 9: 20552076231203802, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799501

RESUMEN

Objective: Cervical cancer stands as a leading cause of mortality among women in developing nations. To ensure the reduction of its adverse consequences, the primary protocols to be adhered to involve early detection and treatment under the guidance of expert medical professionals. An effective approach for identifying this form of malignancy involves the examination of Pap smear images. However, in the context of automating cervical cancer detection, many of the existing datasets frequently exhibit missing data points, a factor that can substantially impact the effectiveness of machine learning models. Methods: In response to these hurdles, this research introduces an automated system designed to predict cervical cancer with a dual focus: adeptly managing missing data while attaining remarkable accuracy. The system's core is built upon a stacked ensemble voting classifier model, which amalgamates three distinct machine learning models, all harmoniously integrated with the KNN Imputer to address the issue of missing values. Results: The model put forth attains an accuracy of 99.41%, precision of 97.63%, recall of 95.96%, and an F1 score of 96.76% when incorporating the KNN imputation method. The investigation conducts a comparative analysis, contrasting the performance of this model with seven alternative machine learning algorithms in two scenarios: one where missing values are eliminated, and another employing KNN imputation. This study offers validation of the effectiveness of the proposed model in comparison to current state-of-the-art methodologies. Conclusions: This research delves into the challenge of handling missing data in the dataset utilized for cervical cancer detection. The findings have the potential to assist healthcare professionals in achieving early detection and enhancing the quality of care provided to individuals affected by cervical cancer.

8.
Sensors (Basel) ; 23(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37688039

RESUMEN

Evapotranspiration (ET) is the fundamental component of efficient water resource management. Accurate forecasting of ET is essential for efficient water utilization in agriculture. ET forecasting is a complex process due to the requirements of large meteorological variables. The recommended approach is based on the Internet of Things (IoT) and an ensemble-learning-based approach for meteorological data collection and ET forecasting with limited meteorological conditions. IoT is part of the recommended approach to collect real-time data on meteorological variables. The daily maximum temperature (T), mean humidity (Hm), and maximum wind speed (Ws) are used to forecast evapotranspiration (ET). Long short-term memory (LSTM) and ensemble LSTM with bagged and boosted approaches are implemented and evaluated for their accuracy in forecasting ET values using meteorological data from 2001 to 2023. The results demonstrate that the bagged LSTM approach accurately forecasts ET with limited meteorological conditions in Riyadh, Saudi Arabia, with the coefficient of determination (R2) of 0.94 compared to the boosted LSTM and off-the-shelf LSTM with R2 of 0.91 and 0.77, respectively. The bagged LSTM model is also more efficient with small values of root mean squared error (RMSE) and mean squared error (MSE) of 0.42 and 0.53 compared to the boosted LSTM and off-the-shelf LSTM models.

9.
Diagnostics (Basel) ; 13(18)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37761292

RESUMEN

Breast cancer is the second leading cause of mortality among women. Early and accurate detection plays a crucial role in lowering its mortality rate. Timely detection and classification of breast cancer enable the most effective treatment. Convolutional neural networks (CNNs) have significantly improved the accuracy of tumor detection and classification in medical imaging compared to traditional methods. This study proposes a comprehensive classification technique for identifying breast cancer, utilizing a synthesized CNN, an enhanced optimization algorithm, and transfer learning. The primary goal is to assist radiologists in rapidly identifying anomalies. To overcome inherent limitations, we modified the Ant Colony Optimization (ACO) technique with opposition-based learning (OBL). The Enhanced Ant Colony Optimization (EACO) methodology was then employed to determine the optimal hyperparameter values for the CNN architecture. Our proposed framework combines the Residual Network-101 (ResNet101) CNN architecture with the EACO algorithm, resulting in a new model dubbed EACO-ResNet101. Experimental analysis was conducted on the MIAS and DDSM (CBIS-DDSM) mammographic datasets. Compared to conventional methods, our proposed model achieved an impressive accuracy of 98.63%, sensitivity of 98.76%, and specificity of 98.89% on the CBIS-DDSM dataset. On the MIAS dataset, the proposed model achieved a classification accuracy of 99.15%, a sensitivity of 97.86%, and a specificity of 98.88%. These results demonstrate the superiority of the proposed EACO-ResNet101 over current methodologies.

10.
Sensors (Basel) ; 23(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37631691

RESUMEN

The small-drone technology domain is the outcome of a breakthrough in technological advancement for drones. The Internet of Things (IoT) is used by drones to provide inter-location services for navigation. But, due to issues related to their architecture and design, drones are not immune to threats related to security and privacy. Establishing a secure and reliable network is essential to obtaining optimal performance from drones. While small drones offer promising avenues for growth in civil and defense industries, they are prone to attacks on safety, security, and privacy. The current architecture of small drones necessitates modifications to their data transformation and privacy mechanisms to align with domain requirements. This research paper investigates the latest trends in safety, security, and privacy related to drones, and the Internet of Drones (IoD), highlighting the importance of secure drone networks that are impervious to interceptions and intrusions. To mitigate cyber-security threats, the proposed framework incorporates intelligent machine learning models into the design and structure of IoT-aided drones, rendering adaptable and secure technology. Furthermore, in this work, a new dataset is constructed, a merged dataset comprising a drone dataset and two benchmark datasets. The proposed strategy outperforms the previous algorithms and achieves 99.89% accuracy on the drone dataset and 91.64% on the merged dataset. Overall, this intelligent framework gives a potential approach to improving the security and resilience of cyber-physical satellite systems, and IoT-aided aerial vehicle systems, addressing the rising security challenges in an interconnected world.

11.
Diagnostics (Basel) ; 13(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37568907

RESUMEN

Brain tumors, along with other diseases that harm the neurological system, are a significant contributor to global mortality. Early diagnosis plays a crucial role in effectively treating brain tumors. To distinguish individuals with tumors from those without, this study employs a combination of images and data-based features. In the initial phase, the image dataset is enhanced, followed by the application of a UNet transfer-learning-based model to accurately classify patients as either having tumors or being normal. In the second phase, this research utilizes 13 features in conjunction with a voting classifier. The voting classifier incorporates features extracted from deep convolutional layers and combines stochastic gradient descent with logistic regression to achieve better classification results. The reported accuracy score of 0.99 achieved by both proposed models shows its superior performance. Also, comparing results with other supervised learning algorithms and state-of-the-art models validates its performance.

12.
Sensors (Basel) ; 23(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37430494

RESUMEN

With technological advancements, smart health monitoring systems are gaining growing importance and popularity. Today, business trends are changing from physical infrastructure to online services. With the restrictions imposed during COVID-19, medical services have been changed. The concepts of smart homes, smart appliances, and smart medical systems have gained popularity. The Internet of Things (IoT) has revolutionized communication and data collection by incorporating smart sensors for data collection from diverse sources. In addition, it utilizes artificial intelligence (AI) approaches to control a large volume of data for better use, storing, managing, and making decisions. In this research, a health monitoring system based on AI and IoT is designed to deal with the data of heart patients. The system monitors the heart patient's activities, which helps to inform patients about their health status. Moreover, the system can perform disease classification using machine learning models. Experimental results reveal that the proposed system can perform real-time monitoring of patients and classify diseases with higher accuracy.


Asunto(s)
COVID-19 , Insuficiencia Cardíaca , Internet de las Cosas , Humanos , Inteligencia Artificial , Internet , Insuficiencia Cardíaca/diagnóstico
13.
Diagnostics (Basel) ; 13(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37238263

RESUMEN

The growth of biomedical engineering has made depression diagnosis via electroencephalography (EEG) a trendy issue. The two significant challenges to this application are EEG signals' complexity and non-stationarity. Additionally, the effects caused by individual variances may hamper the generalization of detection systems. Given the association between EEG signals and particular demographics, such as gender and age, and the influences of these demographic characteristics on the incidence of depression, it would be preferable to include demographic factors during EEG modeling and depression detection. The main objective of this work is to develop an algorithm that can recognize depression patterns by studying EEG data. Following a multiband analysis of such signals, machine learning and deep learning techniques were used to detect depression patients automatically. EEG signal data are collected from the multi-modal open dataset MODMA and employed in studying mental diseases. The EEG dataset contains information from a traditional 128-electrode elastic cap and a cutting-edge wearable 3-electrode EEG collector for widespread applications. In this project, resting EEG readings of 128 channels are considered. According to CNN, training with 25 epoch iterations had a 97% accuracy rate. The patient's status has to be divided into two basic categories: major depressive disorder (MDD) and healthy control. Additional MDD include the following six classes: obsessive-compulsive disorders, addiction disorders, conditions brought on by trauma and stress, mood disorders, schizophrenia, and the anxiety disorders discussed in this paper are a few examples of mental illnesses. According to the study, a natural combination of EEG signals and demographic data is promising for the diagnosis of depression.

14.
Cancers (Basel) ; 15(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36980653

RESUMEN

Brain tumors and other nervous system cancers are among the top ten leading fatal diseases. The effective treatment of brain tumors depends on their early detection. This research work makes use of 13 features with a voting classifier that combines logistic regression with stochastic gradient descent using features extracted by deep convolutional layers for the efficient classification of tumorous victims from the normal. From the first and second-order brain tumor features, deep convolutional features are extracted for model training. Using deep convolutional features helps to increase the precision of tumor and non-tumor patient classification. The proposed voting classifier along with convoluted features produces results that show the highest accuracy of 99.9%. Compared to cutting-edge methods, the proposed approach has demonstrated improved accuracy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...