Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Pharm Sci ; 187: 106477, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37225004

RESUMEN

In this project, drug release was examined based on the adsorption of cisplatin, carboplatin, oxaliplatin, and oxalipalladium on aminated mesoporous silica nanoparticles (N-HMSNs) and human serum albumin (HSA). These compounds were characterized by different techniques where three clinical Pt-drugs, cisplatin, carboplatin, oxaliplatin, plus oxalipalladium were loaded and investigated for release. Based on loading analysis, the loading ability of the mentioned metallodrug on N-HMSNs was dependent on the nature of the drug structure as well as hydrophobic or hydrophilic interactions. Different adsorption and release profiles were observed for all mentioned compounds via dialysis and ICP method analysis. Although the maximum to minimum loading occurred for oxalipalladium, cisplatin, and oxaliplatin to carboplatin, respectively, release from a surface with greater control belonged to carboplatin to cisplatin systems in the absence and presence of HSA to 48 h due to weak interaction for carboplatin drug. The quick release of all mentioned compounds from the protein level at high doses of the drug during chemotherapy occurred very fast within the first 6 h. In addition, the cytotoxic activity of both free drugs and drug-loaded@N-HMSNs samples on cancerous MCF-7, HCT116, A549, and normal HFF cell lines was evaluated by MTT assay. It was found that free metallodrugs exhibited more active cytotoxic behavior on both cancerous and normal cell lines than drug-loaded@N-HMSNs. Data demonstrated that the Cisplatin@N-HMSNs with SI=6.0 and 6.6 for MCF7 and HCT116 cell lines, respectively, and Oxaliplatin@N-HMSNs with SI=7.4 for HCT116 cell line can be good candidates as an anticancer drug with minimal side effects by protecting cytotoxic drugs as well as controlled release and high selectivity.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Cisplatino , Carboplatino/farmacología , Carboplatino/química , Oxaliplatino , Liberación de Fármacos , Albúmina Sérica Humana , Dióxido de Silicio/química , Antineoplásicos/farmacología , Nanopartículas/química , Neoplasias/tratamiento farmacológico
2.
J Biomol Struct Dyn ; 34(1): 206-22, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25734364

RESUMEN

Some amino acid derivatives, such as R-glycine, have been synthesized together with their full spectroscopic characterization. The sodium salts of these bidentate amino acid ligands have been interacted with [M(bpy)(H2O)2](NO3)2 giving the corresponding some new complexes with formula [M(bpy)(R-gly)]NO3 (where M is Pt(II) or Pd(II), bpy is 2,2'-bipyridine and R-gly is butyl-, hexyl- and octyl-glycine). Due to less solubility of octyl derivatives, the biological activities of butyl and hexyl derivatives have been tested against chronic myelogenous leukemia cell line, K562. The interaction of these complexes with highly polymerized calf thymus DNA has been extensively studied by means of electronic absorption, fluorescence and other measurements. The experimental results suggest that these complexes positive cooperatively bind to DNA presumably via groove binding. Molecular dynamic results show that the DNA structure is largely maintained its native structure in hexylglycine derivative-water mixtures and at lower temperatures. The simulation data indicates that the more destabilizing effect of butylglycine is induced by preferential accumulation of these molecules around the DNA and due to their more negative free energy of binding via groove binding.


Asunto(s)
ADN/química , Glicina/química , Ligandos , Sustancias Macromoleculares/química , 2,2'-Dipiridil/química , Animales , Bovinos , Glicina/análogos & derivados , Simulación de Dinámica Molecular , Paladio/química , Platino (Metal)/química , Agua/química
3.
Artículo en Inglés | MEDLINE | ID: mdl-25262751

RESUMEN

Studies on the interactions between metallodrugs and human serum albumin (HSA), as carrier for drugs and biological molecules, are extremely important to design and discover new drugs. The interaction of three novel synthesized complexes of [Pd(phen)(R-gly)]NO3, where R-gly is methyl-, propyl-, and amyl-glycine and phen is 1,10- phenanthroline, with HSA were investigated using spectroscopic studies in combination with a molecular dynamic simulation. These water soluble complexes can denature HSA at ~50 µM. According to the results obtained for the isothermal titration at 27 and 37°C, it was found that there are 10, 8, and 6 binding sites (g) for methyl-, propyl-, and amyl-glycine complexes on the HSA with positive cooperativity in binding, respectively. Also, the binding and thermodynamic parameters were analyzed. We found a good consistency between secondary structure and simulation data with spectroscopic studies, and the experimental data are confirmed by molecular simulation results. In addition, the results related to helix, beta sheets, and coil percentages revealed that all complexes decrease the helix structure and increase the beta structure; and that the amyl derivative is more effective in denaturing the HSA structure.


Asunto(s)
Simulación de Dinámica Molecular , Compuestos Organometálicos/química , Paladio/química , Albúmina Sérica/química , Humanos , Estructura Molecular , Compuestos Organometálicos/síntesis química , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...