Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Infect Immun ; : e0002424, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700335

RESUMEN

Cryptococcus deneoformans is a yeast-type fungus that causes fatal meningoencephalitis in immunocompromised patients and evades phagocytic cell elimination through an escape mechanism. Memory T (Tm) cells play a central role in preventing the reactivation of this fungal pathogen. Among these cells, tissue-resident memory T (TRM) cells quickly respond to locally invaded pathogens. This study analyzes the kinetics of effector T (Teff) cells and Tm cells in the lungs after cryptococcal infection. Emphasis is placed on the kinetics and cytokine expression of TRM cells in the early phase of infection. CD4+ Tm cells exhibited a rapid increase by day 3, peaked at day 7, and then either maintained their levels or exhibited a slight decrease until day 56. In contrast, CD8+ Tm cells reached their peak on day 3 and thereafter decreased up to day 56 post-infection. These Tm cells were predominantly composed of CD69+ TRM cells and CD69+ CD103+ TRM cells. Disruption of the CARD9 gene resulted in reduced accumulation of these TRM cells and diminished interferon (IFN) -γ expression in TRM cells. TRM cells were derived from T cells with T cell receptors non-specific to ovalbumin in OT-II mice during cryptococcal infection. In addition, TRM cells exhibited varied behavior in different tissues. These results underscore the importance of T cells, which produce IFN-γ in the lungs during the early stage of infection, in providing early protection against cryptococcal infection through CARD9 signaling.

2.
PLoS Pathog ; 20(1): e1011878, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38170734

RESUMEN

Although chitin in fungal cell walls is associated with allergic airway inflammation, the precise mechanism underlying this association has yet to be elucidated. Here, we investigated the involvement of fungal chitin-binding protein and chitin in allergic airway inflammation. Recombinant Aspergillus fumigatus LdpA (rLdpA) expressed in Pichia pastoris was shown to be an O-linked glycoprotein containing terminal α-mannose residues recognized by the host C-type lectin receptor, Dectin-2. Chitin particles were shown to induce acute neutrophilic airway inflammation mediated release of interleukin-1α (IL-1α) associated with cell death. Furthermore, rLdpA-Dectin-2 interaction was shown to promote phagocytosis of rLdpA-chitin complex and activation of mouse bone marrow-derived dendritic cells (BMDCs). Moreover, we showed that rLdpA potently induced T helper 2 (Th2)-driven allergic airway inflammation synergistically with chitin, and Dectin-2 deficiency attenuated the rLdpA-chitin complex-induced immune response in vivo. In addition, we showed that serum LdpA-specific immunoglobulin levels were elevated in patients with pulmonary aspergillosis.


Asunto(s)
Quitina , Lectinas Tipo C , Humanos , Animales , Ratones , Quitina/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Aspergillus fumigatus , Inflamación , Fagocitosis , Glicoproteínas/metabolismo
3.
J Innate Immun ; 15(1): 397-411, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36657412

RESUMEN

Aspergillus fumigatus is a ubiquitous, yet potentially pathogenic, mold. The immune system employs innate receptors, such as dectin-1, to recognize fungal pathogens, but the immunological networks that afford protection are poorly explored. Here, we investigated the role of dectin-1 in anti-A. fumigatus response in an experimental model of acute invasive aspergillosis. Mice lacking dectin-1 presented enhanced signs of inflammation, with increased production of inflammatory cytokines and neutrophil infiltration, quickly succumbing to the infection. Curiously, resistance did not require T/B lymphocytes or IL-17. Instead, the main effector function of dectin-1 was the preservation of the NK cell population in the kidneys by the provision of the cytokine IL-15. While the depletion of NK cells impaired host defense in wild-type mice, IL-15 administration restored antifungal responses in dectin-1-deficient mice. Our results uncover a new effector mechanism for dectin-1 in anti-Aspergillus defense, adding an alternative approach to understand the pathophysiology of this infection.


Asunto(s)
Aspergilosis , Aspergillus fumigatus , Animales , Ratones , Interleucina-15 , Lectinas Tipo C/metabolismo , Citocinas , Células Asesinas Naturales
4.
Int Immunol ; 34(8): 409-420, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35641096

RESUMEN

IL-17 plays important roles in host defense against Candida albicans at barrier surfaces and during invasive infection. However, the role of IL-17 in host defense after colonization of the epidermis, a main site of C. albicans infection, remains poorly understood. Using a murine model of epicutaneous candidiasis without skin abrasion, we found that skin inflammation triggered by epidermal C. albicans colonization was self-limiting with fungal clearance completed by day 7 after inoculation in wild-type mice or animals deficient in IL-17A or IL-17F. In contrast, marked neutrophilic inflammation in the epidermis and impaired fungal clearance were observed in mice lacking both IL-17A and IL-17F. Clearance of C. albicans was independent of Dectin-1, Dectin-2, CARD9 (caspase-recruitment domain family, member 9), TLR2 (Toll-like receptor 2) and MyD88 in the epidermal colonization model. We found that group 3 innate lymphoid cells (ILC3s) and γδT cells were the major IL-17 producers in the epicutaneous candidiasis model. Analyses of Rag2-/- mice and Rag2-/-Il2rg-/- mice revealed that production of IL-17A and IL-17F by ILC3s was sufficient for C. albicans clearance. Finally, we found that depletion of neutrophils impaired C. albicans clearance in the epidermal colonization model. Taken together, these findings indicate a critical and redundant function of IL-17A and IL-17F produced by ILC3s in host defense against C. albicans in the epidermis. The results also suggest that epidermal C. albicans clearance is independent of innate immune receptors or that these receptors act redundantly in fungal recognition and clearance.


Asunto(s)
Candida albicans , Candidiasis , Interleucina-17/inmunología , Animales , Proteínas Adaptadoras de Señalización CARD , Epidermis/metabolismo , Inmunidad Innata , Inflamación , Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
5.
Exp Anim ; 71(3): 288-304, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35135958

RESUMEN

Clec1A, a member of C-type lectin receptor family, has a carbohydrate recognition domain in its extracellular region, but no known signaling motif in the cytoplasmic domain. Clec1a is highly expressed in endothelial cells and weakly in dendritic cells. Although this molecule was reported to play an important role in the host defense against Aspergillus fumigatus by recognizing 1,8-dihydroxynaphthalene-melanin on the fungal surface, the roles of this molecule in un-infected animals remain to be elucidated. In this study, we found that Clec1a-/- mice develop milder symptoms upon induction of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. The maximum disease score was significantly lower, and demyelination and inflammation of the spinal cord were much milder in Clec1a-/- mice compared to wild-type mice. No abnormality was detected in the immune cell composition in the draining lymph nodes and spleen on day 10 and 16 after EAE induction. Recall memory T cell proliferation after restimulation with myelin oligodendrocyte glycoprotein peptide (MOG35-55) in vitro was decreased in Clec1a-/- mice, and antigen presenting ability of Clec1a-/- dendritic cells was impaired. Interestingly, RNA-Seq and RT-qPCR analyses clearly showed that the expression of inflammatory cytokines including Il17a, Il6 and Il1b was greatly decreased in Clec1a-/- mice after induction of EAE, suggesting that this reduced cytokine production is responsible for the amelioration of EAE in Clec1a-/- mice. These observations suggest a novel function of Clec1A in the immune system.


Asunto(s)
Presentación de Antígeno , Células Dendríticas , Encefalomielitis Autoinmune Experimental , Interleucina-17 , Lectinas Tipo C , Animales , Citocinas/metabolismo , Células Dendríticas/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Células Endoteliales/metabolismo , Interleucina-17/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ratones , Ratones Endogámicos C57BL
6.
Infect Immun ; 89(10): e0033021, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34251289

RESUMEN

The cell walls and capsules of Cryptococcus neoformans, a yeast-type fungal pathogen, are rich in polysaccharides. Dectin-2 is a C-type lectin receptor (CLR) that recognizes high-mannose polysaccharides. Previously, we demonstrated that Dectin-2 is involved in cytokine production by bone marrow-derived dendritic cells (BM-DCs) in response to stimulation with C. neoformans. In the present study, we analyzed the role of Dectin-2 in the phagocytosis of C. neoformans by BM-DCs. The engulfment of this fungus by BM-DCs was significantly decreased in mice lacking Dectin-2 (Dectin-2 knockout [Dectin-2KO]) or caspase recruitment domain-containing protein 9 (CARD9KO), a common adapter molecule that delivers signals triggered by CLRs, compared to wild-type (WT) mice. Phagocytosis was likewise inhibited, to a similar degree, by the inhibition of Syk, a signaling molecule involved in CLR-triggered activation. A PI3K inhibitor, in contrast, completely abrogated the phagocytosis of C. neoformans. Actin polymerization, i.e., conformational changes in cytoskeletons detected at sites of contact with C. neoformans, was also decreased in BM-DCs of Dectin-2KO and CARD9KO mice. Finally, the engulfment of C. neoformans by macrophages was significantly decreased in the lungs of Dectin-2KO mice compared to WT mice. These results suggest that Dectin-2 may play an important role in the actin polymerization and phagocytosis of C. neoformans by DCs, possibly through signaling via CARD9 and a signaling pathway mediated by Syk and PI3K.


Asunto(s)
Criptococosis/microbiología , Cryptococcus neoformans/patogenicidad , Células Dendríticas/metabolismo , Lectinas Tipo C/metabolismo , Fagocitosis/fisiología , Animales , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/microbiología , Proteínas Adaptadoras de Señalización CARD/metabolismo , Criptococosis/metabolismo , Citocinas/metabolismo , Células Dendríticas/microbiología , Femenino , Pulmón/metabolismo , Pulmón/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/metabolismo
7.
Biomed Res ; 42(2): 53-66, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33840686

RESUMEN

Antigen-presenting cells express pattern recognition receptors (PRRs), which sense pathogen-associated molecular patterns from microorganisms and lead to the induction of inflammatory responses. C-type lectin receptors (CLRs), the representative PRRs, bind to microbial polysaccharides, among which Dectin-2 and Mincle recognize mannose-containing polysaccharides. Because influenza virus (IFV) hemagglutinin (HA) is rich in mannose polysaccharides, Dectin-2 or Mincle may contribute to the recognition of HA. In this study, we addressed the possible involvement of Dectin-2 and Mincle in the viral recognition and the initiation of cytokine production. Interleukin (IL)-12p40 and IL-6 production by bone marrow-derived dendritic cells (BM-DCs) upon stimulation with HA was significantly reduced in Dectin-2 knockout (KO) mice compared to wild-type (WT) mice whereas there was no difference between WT mice and Mincle KO mice. BM-DCs that were treated with Syk inhibitor resulted in a significant reduction of cytokine production upon stimulation with HA. The treatment of BM-DCs with methyl-α-D-mannopyranoside (ManP) also led to a significant reduction in cytokine production by BM-DCs that were stimulated with HA, except for the A/H1N1pdm09 subtype. IL-12p40 and IL-6 synthesis by BM-DCs was completely diminished upon stimulation with HA treated with concanavalin A (ConA)-bound sepharose beads. Finally, GFP expression was detected in reporter cells that were transfected with the Dectin-2 gene, but not with the Mincle gene, when stimulated with HA derived from the A/H3N2 subtype. These data suggested that Dectin-2 may be a key molecule as the sensor for IFV to initiate the immune response and regulate the pathogenesis of IFV infection.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Sistema Inmunológico/metabolismo , Gripe Humana/inmunología , Lectinas Tipo C/fisiología , Proteínas de la Membrana/fisiología , Animales , Células Presentadoras de Antígenos/metabolismo , Células de la Médula Ósea/metabolismo , Concanavalina A/química , Citocinas/metabolismo , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Gripe Humana/metabolismo , Subunidad p40 de la Interleucina-12/biosíntesis , Interleucina-6/biosíntesis , Lectinas Tipo C/metabolismo , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Transcripción NFATC/metabolismo , Sefarosa/química , Quinasa Syk/metabolismo
8.
J Infect Dis ; 223(10): 1753-1765, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33837391

RESUMEN

BACKGROUND: Among skin commensal fungi, lipophilic Malassezia species exist on nearly all human skin surfaces. The pathophysiology of Malassezia-associated skin diseases remains poorly understood due in part to the lack of appropriate animal models. Our objective was to investigate the mechanisms underlying Malassezia-induced skin inflammation using a novel murine model that physiologically recapitulates Malassezia skin infection. METHODS: Mice were inoculated epicutaneously with Malassezia yeasts without barrier disruption and in the absence of external lipid supplementation. Skin inflammation, lesional fungal loads, and expression of cytokines and antimicrobial peptides were evaluated in wild-type and mutant mouse strains. RESULTS: Malassezia-induced skin inflammation and epidermal thickening were observed on day 4 after inoculation in wild-type mice. High fungal burdens were detected in the cornified layer on day 2 and decreased thereafter with near complete clearance by day 7 after inoculation. Malassezia-induced skin inflammation and fungal clearance by the host were interleukin-17 (IL-17) dependent with contribution of group 3 innate lymphoid cells. Moreover, IL-17-dependent skin inflammation was mediated through IL-36 receptor and keratinocyte MyD88 signaling. CONCLUSION: Using a new skin infection model, it is shown that Malassezia-induced IL-17- dependent skin inflammation and control of fungal infection are mediated via keratinocyte IL-36 receptor/MyD88 signaling.


Asunto(s)
Dermatomicosis/inmunología , Interleucina-17/inmunología , Queratinocitos , Factor 88 de Diferenciación Mieloide , Receptores de Interleucina-1/inmunología , Animales , Péptidos Antimicrobianos , Inmunidad Innata , Inflamación/microbiología , Linfocitos , Malassezia/patogenicidad , Ratones , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Piel
9.
Nat Commun ; 12(1): 94, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397982

RESUMEN

TARM1 is a member of the leukocyte immunoglobulin-like receptor family and stimulates macrophages and neutrophils in vitro by associating with FcRγ. However, the function of this molecule in the regulation of the immune system is unclear. Here, we show that Tarm1 expression is elevated in the joints of rheumatoid arthritis mouse models, and the development of collagen-induced arthritis (CIA) is suppressed in Tarm1-/- mice. T cell priming against type 2 collagen is suppressed in Tarm1-/- mice and antigen-presenting ability of GM-CSF-induced dendritic cells (GM-DCs) from Tarm1-/- mouse bone marrow cells is impaired. We show that type 2 collagen is a functional ligand for TARM1 on GM-DCs and promotes DC maturation. Furthermore, soluble TARM1-Fc and TARM1-Flag inhibit DC maturation and administration of TARM1-Fc blocks the progression of CIA in mice. These results indicate that TARM1 is an important stimulating factor of dendritic cell maturation and could be a good target for the treatment of autoimmune diseases.


Asunto(s)
Artritis Experimental/metabolismo , Artritis Experimental/patología , Colágeno/metabolismo , Células Dendríticas/patología , Receptores Inmunológicos/metabolismo , Animales , Presentación de Antígeno , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Inmunización , Ligandos , Ratones Endogámicos C57BL , Receptores Inmunológicos/deficiencia
10.
J Invest Dermatol ; 141(1): 164-176.e8, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32511980

RESUMEN

C-type lectin receptors recognize microbial polysaccharides. The C-type lectin receptors such as dendritic cell-associated C-type lectin (Dectin)-1 and Dectin-2, which are triggered by ß-glucan and α-mannan, respectively, contribute to upregulation of the inflammatory response. Recently, we demonstrated that activation of the Dectin-2 signal delayed wound healing; in previous studies, triggering the Dectin-1 signal promoted this response. However, the precise roles of these C-type lectin receptors in skin wound healing remain unclear. This study was conducted to determine the roles of Dectin-1 and Dectin-2 in skin wound healing, with a particular focus on the kinetics of neutrophilic inflammatory response. Full-thickness wounds were created on the backs of C57BL/6 mice, and the effects of Dectin-1 or Dectin-2 deficiency and those of ß-glucan or α-mannan administration were examined. We also analyzed wound closure, histological findings, and neutrophilic inflammatory response, including neutrophil extracellular trap formation at the wound sites. We found that Dectin-1 contributed to the acceleration of wound healing by inducing early-phase neutrophil accumulation, whereas Dectin-2 was involved in prolonged neutrophilic responses and neutrophil extracellular trap formation, leading to delayed wound healing. Dectin-2 deficiency also improved collagen deposition and TGF-ß1 expression. These results suggest that Dectin-1 and Dectin-2 have different roles in wound healing through their different effects on the neutrophilic response.


Asunto(s)
Inflamación/metabolismo , Lectinas Tipo C/metabolismo , Neutrófilos/metabolismo , Cicatrización de Heridas/fisiología , Animales , Modelos Animales de Enfermedad , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/patología
11.
J Biol Chem ; 294(45): 16776-16788, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31551352

RESUMEN

Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of cell-surface immune receptors that bind to sialic acid at terminal glycan residues. Siglecs also recognize nonsialic acid ligands, many of which remain to be characterized. Here, we found that Siglec5 and Siglec14 recognize lipid compounds produced by Trichophyton, a fungal genus containing several pathogenic species. Biochemical approaches revealed that the Siglec ligands are fungal alkanes and triacylglycerols, an unexpected finding that prompted us to search for endogenous lipid ligands of Siglecs. Siglec5 weakly recognized several endogenous lipids, but the mitochondrial lipid cardiolipin and the anti-inflammatory lipid 5-palmitic acid-hydroxystearic acid exhibited potent ligand activity on Siglec5. Further, the hydrophobic stretch in the Siglec5 N terminus region was found to be required for efficient recognition of these lipids. Notably, this hydrophobic stretch was dispensable for recognition of sialic acid. Siglec5 inhibited cell activation upon ligand binding, and accordingly, the lipophilic ligands suppressed interleukin-8 (IL-8) production in Siglec5-expressing human monocytic cells. Siglec14 and Siglec5 have high sequence identity in the extracellular region, and Siglec14 also recognized the endogenous lipids. However, unlike Siglec5, Siglec14 transduces activating signals upon ligand recognition. Indeed, the endogenous lipids induced IL-8 production in Siglec14-expressing human monocytic cells. These results indicated that Siglec5 and Siglec14 can recognize lipophilic ligands that thereby modulate innate immune responses. To our knowledge, this is the first study reporting the binding of Siglecs to lipid ligands, expanding our understanding of the biological function and importance of Siglecs in the innate immunity.


Asunto(s)
Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Proteínas Fúngicas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Inmunidad Innata , Lectinas/metabolismo , Receptores de Superficie Celular/metabolismo , Alcanos/química , Alcanos/metabolismo , Línea Celular , Humanos , Ligandos , Trichophyton/inmunología , Triglicéridos/química , Triglicéridos/metabolismo
12.
Microbiol Immunol ; 63(5): 155-163, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30919462

RESUMEN

Gut microbes symbiotically colonize the gastrointestinal (GI) tract, interacting with each other and their host to maintain GI tract homeostasis. Recent reports have shown that gut microbes help protect the gut from colonization by pathogenic microbes. Here, we report that commensal microbes prevent colonization of the GI tract by the pathogenic fungus, Candida albicans. Wild-type specific pathogen-free (SPF) mice are resistant to C. albicans colonization of the GI tract. However, administering certain antibiotics to SPF mice enables C. albicans colonization. Quantitative kinetics of commensal bacteria are inversely correlated with the number of C. albicans in the gut. Here, we provide further evidence that transplantation of fecal microbiota is effective in preventing Candida colonization of the GI tract. These data demonstrate the importance of commensal bacteria as a barrier for the GI tract surface and highlight the potential clinical applications of commensal bacteria in preventing pathogenic fungal infections.


Asunto(s)
Bacterias , Candida albicans/patogenicidad , Candidiasis/prevención & control , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Animales , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Simbiosis
13.
J Invest Dermatol ; 139(3): 702-711, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30393083

RESUMEN

Dendritic cell-associated C-type lectin-2 (i.e., dectin-2) recognizes fungal polysaccharides, including α-mannan. Dectin-2-mediated recognition of fungi, such as Candida albicans, leads to NF-κB activation, which induces production of inflammatory cytokines. However, the role of dectin-2 in skin wound healing remains unclear. In this study, we sought to determine how dectin-2 deficiency and the administration of α-mannan affected the wound healing process. Full-thickness wounds were created on the backs of wild type C57BL/6 and dectin-2-deficient mice. We analyzed wound closure, histological findings, and re-epithelialization. We also examined the neutrophilic inflammatory responses and neutrophil extracellular trap (NET)-osis at the wound sites after administration of α-mannan. The percent wound closure and re-epithelialization was significantly accelerated in dectin-2-knockout mice compared with wild-type mice on days 3 and 5 after wounding. In contrast, administration of α-mannan delayed wound closure in wild-type mice, and these responses were canceled in dectin-2-knockout mice. Furthermore, mice administered α-mannan, neutrophil infiltration was prolonged, and the expression of citrullinated histone, an indicator of NETosis, at the wound sites was accelerated. Administration of a neutrophil elastase inhibitor significantly improved the delayed wound healing caused by α-mannan. These results suggest that dectin-2 may have a deep impact on the skin wound healing process through regulation of neutrophilic responses.


Asunto(s)
Trampas Extracelulares/genética , Lectinas Tipo C/genética , Cicatrización de Heridas/genética , alfa-Manosidasa/farmacología , Administración Tópica , Animales , Biopsia con Aguja , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inmunohistoquímica , Inflamación/genética , Inflamación/fisiopatología , Lectinas Tipo C/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/citología , Distribución Aleatoria , Repitelización/genética , Transducción de Señal/genética
14.
Nat Immunol ; 19(7): 755-765, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29915298

RESUMEN

The cytokines IL-17A and IL-17F have 50% amino-acid identity and bind the same receptor; however, their functional differences have remained obscure. Here we found that Il17f-/- mice resisted chemically induced colitis, but Il17a-/- mice did not, and that Il17f-/- CD45RBhiCD4+ T cells induced milder colitis in lymphocyte-deficient Rag2-/- mice, accompanied by an increase in intestinal regulatory T cells (Treg cells). Clostridium cluster XIVa in colonic microbiota capable of inducing Treg cells was increased in both Il17f-/- mice and mice given transfer Il17f-/- T cells, due to decreased expression of a group of antimicrobial proteins. There was substantial production of IL-17F, but not of IL-17A, not only by naive T cells but also by various colon-resident cells under physiological conditions. Furthermore, antibody to IL-17F suppressed the development of colitis, but antibody to IL-17A did not. These observations suggest that IL-17F is an effective target for the treatment of colitis.


Asunto(s)
Colitis/inmunología , Microbioma Gastrointestinal , Interleucina-17/antagonistas & inhibidores , Linfocitos T Reguladores/inmunología , Animales , Células Cultivadas , Clostridium/crecimiento & desarrollo , Clostridium/aislamiento & purificación , Colitis/tratamiento farmacológico , Interleucina-17/genética , Interleucina-17/fisiología , Intestinos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfolipasas A2/biosíntesis , Fosfolipasas A2/genética , Prevotella/aislamiento & purificación , Ribonucleasa Pancreática/biosíntesis , Ribonucleasa Pancreática/genética , beta-Defensinas/biosíntesis
16.
J Immunol ; 201(1): 167-182, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29794016

RESUMEN

IL-36α (gene symbol Il1f6), a member of the IL-36 family, is closely associated with inflammatory diseases, including colitis and psoriasis. In this study, we found that Il1f6-/- mice developed milder psoriasiform dermatitis upon treatment with imiquimod, a ligand for TLR ligand 7 (TLR7) and TLR8, whereas Il1f6-/- mice showed similar susceptibility to dextran sodium sulfate-induced colitis to wild-type mice. These effects were observed in both cohoused and separately housed conditions, and antibiotic treatment did not cancel the resistance of Il1f6-/- mice to imiquimod-induced dermatitis. Bone marrow (BM) cell transfer revealed that IL-36α expression in skin-resident cells is important for the pathogenesis of dermatitis in these mice. Following stimulation with IL-36α, the expression of Il1f6 and Il1f9 (IL-36γ), but not Il1f8 (IL-36ß), was enhanced in murine BM-derived Langerhans cells (BMLCs) and murine primary keratinocytes but not in fibroblasts from mice. Upon stimulation with agonistic ligands of TLRs and C-type lectin receptors (CLRs), Il1f6 expression was induced in BMLCs and BM-derived dendritic cells. Furthermore, IL-36α stimulation resulted in significantly increased gene expression of psoriasis-associated Th17-related cytokines and chemokines such as IL-1α, IL-1ß, IL-23, CXCL1, and CXCL2 in BMLCs and fibroblasts, and IL-1α, IL-1ß, IL-17C, and CXCL2 in keratinocytes. Collectively, these results suggest that TLR/CLR signaling-induced IL-36α plays an important role for the development of psoriasiform dermatitis by enhancing Th17-related cytokine/chemokine production in skin-resident cells via a local autoamplification loop.


Asunto(s)
Adyuvantes Inmunológicos/toxicidad , Quimiocinas/biosíntesis , Colitis/patología , Imiquimod/toxicidad , Interleucina-1/metabolismo , Queratinocitos/metabolismo , Psoriasis/patología , Piel/patología , Células Th17/inmunología , Animales , Células de la Médula Ósea/citología , Trasplante de Médula Ósea , Células Cultivadas , Colitis/inducido químicamente , Células Dendríticas/metabolismo , Sulfato de Dextran/toxicidad , Fibroblastos/metabolismo , Interleucina-1/genética , Células de Langerhans/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Psoriasis/tratamiento farmacológico , Psoriasis/genética , Piel/citología , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 8/metabolismo
17.
Curr Opin Microbiol ; 40: 123-130, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29169147

RESUMEN

Host immune systems are constantly engaged with fungal pathogens which are common in environments as well as in healthy human skin and mucosa. C-type lectin receptors (CLRs) are expressed in myeloid cells and play central roles in host defenses against fungal infections by coordinating innate and adaptive immune systems. Upon ligand binding, CLRs stimulate cellular responses by inducing the production of cytokines and reactive oxygen species via the Syk/CARD9 signaling pathway, leading to fungal elimination. Due to identification and characterization of the CLRs, the underlying mechanisms of the anti-fungal immunity are being unveiled in the present decade. In this review, we focus on the anti-fungal activities of CLRs and summarize of current knowledge of the related expression profiles, modes of ligand recognition, and signaling cascades.


Asunto(s)
Hongos/fisiología , Inmunidad Innata , Lectinas Tipo C/inmunología , Micosis/inmunología , Animales , Hongos/genética , Humanos , Lectinas Tipo C/genética , Micosis/genética , Micosis/microbiología , Transducción de Señal
18.
Cell Host Microbe ; 22(5): 667-677.e5, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-29120744

RESUMEN

Staphylococcus aureus commonly colonizes the epidermis, but the mechanisms by which the host senses virulent, but not commensal, S. aureus to trigger inflammation remain unclear. Using a murine epicutaneous infection model, we found that S. aureus-expressed phenol-soluble modulin (PSM)α, a group of secreted virulence peptides, is required to trigger cutaneous inflammation. PSMα induces the release of keratinocyte IL-1α and IL-36α, and signaling via IL-1R and IL-36R was required for induction of the pro-inflammatory cytokine IL-17. The levels of released IL-1α and IL-36α, as well as IL-17 production by γδ T cells and ILC3 and neutrophil infiltration to the site of infection, were greatly reduced in mice with total or keratinocyte-specific deletion of the IL-1R and IL-36R signaling adaptor Myd88. Further, Il17a-/-f-/- mice showed blunted S. aureus-induced inflammation. Thus, keratinocyte Myd88 signaling in response to S. aureus PSMα drives an IL-17-mediated skin inflammatory response to epicutaneous S. aureus infection.


Asunto(s)
Alarminas/efectos de los fármacos , Toxinas Bacterianas/farmacología , Inflamación/inmunología , Interleucina-17/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/inmunología , Infecciones Cutáneas Estafilocócicas/inmunología , Staphylococcus aureus/patogenicidad , Animales , Proteínas Bacterianas/metabolismo , Citocinas/metabolismo , Dermatitis/inmunología , Dermatitis/metabolismo , Dermatitis/microbiología , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamación/patología , Interleucina-1/metabolismo , Interleucina-1alfa/metabolismo , Queratinocitos/microbiología , Queratinocitos/patología , Ratones , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/metabolismo , Neutrófilos/metabolismo , Péptidos/farmacología , Receptores de Interleucina-1 , Infecciones Cutáneas Estafilocócicas/microbiología , Infecciones Cutáneas Estafilocócicas/patología , Linfocitos T/metabolismo , Transactivadores/metabolismo , Virulencia
19.
Front Immunol ; 8: 1397, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29118762

RESUMEN

The human fungal microbiota known as mycobiota is increasingly recognized as a critical factor in human gut health and disease. Non-pathogenic commensal yeasts such as Saccharomyces cerevisiae promote homeostasis in the gut, whereas dysbiosis of the gut mycobiota is associated with inflammation. Glycan-binding receptors (lectins) are key host factors in host-mycobiota interaction in the gut. They are expressed on immune cells such as dendritic cells (DCs) and recognize fungal polysaccharides. This interaction is imperative to mount appropriate immune responses for immune homeostasis in the gut as well as clearance of fungal pathogens. Recent studies demonstrate that microtubule-associated protein light-chain 3 (LC3)-associated phagocytosis (LAP) is involved in lectin-fungi interactions. Yet, the biological impact of LAP on the lectin function remains largely elusive. In this report, we demonstrate that in mouse LAP is linked to dendritic cell-associated lectin 2 (Dectin-2), a C-type lectin specific to fungal α-mannan polysaccharide. We found that mouse Dectin-2 recognizes commensal yeast S. cerevisiae and Kazachstania unispora. Mouse bone marrow-derived DCs (BMDCs) produced inflammatory cytokines TNFα and IL-1ß in response to the yeasts in a Dectin-2 and spleen tyrosine kinase (Syk)-dependent manner. We found that S. cerevisiae and K. unispora induced LAP in mouse BMDCs upon internalization. Furthermore, LC3 was activated by stimulation of BMDCs with the yeasts in a Dectin-2 and Syk-dependent manner. To address the biological impact of LAP on Dectin-2 yeast interaction, we established a knock-in mouse strain (Atg16L1E230, thereafter called E230), which BMDCs exhibit autophagy-active and LAP-negative phenotypes. When stimulated with yeasts, E230 BMDCs produced significantly less amounts of TNFα and IL-1ß. Taken together, we revealed a novel link between Dectin-2 and LAP that enables host immune cells to respond to mycobiota.

20.
J Immunol ; 198(1): 61-70, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27852745

RESUMEN

It is well known that sensitization against fungi is closely associated with severity of asthma. Dectin-1 (gene symbol Clec7a), a C-type lectin receptor, recognizes the fungal cell wall component ß-glucan, as well as some component(s) in house dust mite (HDM) extract. However, the roles of Dectin-1 in HDM-induced allergic airway inflammation remain unclear. In this study, we used Dectin-1-deficient (Clec7a-/-) mice to examine whether Dectin-1 is involved in HDM-induced allergic airway inflammation. We found that HDM-induced eosinophil and neutrophil recruitment into the airways was significantly attenuated in Clec7a-/- mice compared with that in wild-type mice. In addition, HDM-induced IL-5, IL-13, and IL-17 production from mediastinum lymph node cells was reduced in HDM-sensitized Clec7a-/- mice. Dectin-1 was expressed on CD11b+ dendritic cells (DCs), an essential DC subset for the development of allergic inflammation, but not on CD103+ DCs, plasmacytoid DCs, or lung epithelial cells. Transcriptome analysis revealed that the expression of chemokine/chemokine receptors, including CCR7, which is indispensable for DC migration to draining lymph nodes, was decreased in Clec7a-/- DCs. In accordance with these results, the number of HDM-labeled CD11b+ DCs in mediastinum lymph nodes was significantly reduced in Clec7a-/- mice compared with wild-type mice. Taken together, these results suggest that Dectin-1 expressed on CD11b+ DCs senses some molecule(s) in HDM extract and plays a critical role in the induction of HDM-induced allergic airway inflammation by inducing the expression of chemokine/chemokine receptors in DCs.


Asunto(s)
Asma/inmunología , Células Dendríticas/inmunología , Hipersensibilidad/inmunología , Lectinas Tipo C/inmunología , Animales , Antígenos Dermatofagoides/inmunología , Antígeno CD11b/inmunología , Quimiotaxis de Leucocito , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pyroglyphidae/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...