Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
J Physiol ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733166

RESUMEN

The complementary dominance hypothesis is a novel model of motor lateralization substantiated by decades of research examining interlimb differences in the control of upper extremity movements in neurotypical adults and hemisphere-specific motor deficits in stroke survivors. In contrast to earlier ideas that attribute handedness to the specialization of one hemisphere, our model proposes complementary motor control specializations in each hemisphere. The dominant hemisphere mediates optimal control of limb dynamics as required for smooth and efficient movements, whereas the non-dominant hemisphere mediates impedance control, important for countering unexpected mechanical conditions and achieving steady-state limb positions. Importantly, this model proposes that each hemisphere contributes its specialization to both arms (though with greater influence from either arm's contralateral hemisphere) and thus predicts that lesions to one hemisphere should produce hemisphere-specific motor deficits in not only the contralesional arm, but also the ipsilesional arm of stroke survivors - a powerful prediction now supported by a growing body of evidence. Such ipsilesional arm motor deficits vary with contralesional arm impairment, and thus individuals with little to no functional use of the contralesional arm experience both the greatest impairments in the ipsilesional arm, as well as the greatest reliance on it to serve as the main or sole manipulator for activities of daily living. Accordingly, we have proposed and tested a novel intervention that reduces hemisphere-specific ipsilesional arm deficits and thereby improves functional independence in stroke survivors with severe contralesional impairment.

2.
J Neurophysiol ; 131(6): 982-996, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38629153

RESUMEN

Previous studies suggest that bimanual coordination recruits neural mechanisms that explicitly couple control of the arms, resulting in symmetric kinematics. However, the higher symmetry for actions that require congruous joint motions compared with noncongruous joint motions calls into question the concept of control coupling as a general policy. An alternative view proposes that codependence might emerge from an optimal feedback controller that minimizes control effort and costs in task performance. Support for this view comes from studies comparing conditions in which both hands move a shared or independent virtual objects. Because these studies have mainly focused on congruous bimanual movements, it remains unclear if kinematic symmetry emerges from such control policies. We now examine movements with congruous or noncongruous joint motions (inertially symmetric or asymmetric, respectively) under shared or independent cursors conditions. We reasoned that if a control policy minimizes kinematic differences between limbs, spatiotemporal symmetry should remain relatively unaffected by inertial asymmetries. As shared tasks reportedly elicit greater interlimb codependence, these conditions should elicit higher bilateral covariance regardless of inertial asymmetries. Our results indicate a robust spatiotemporal symmetry only under inertially symmetric conditions, regardless of cursor condition. We simulated bimanual reaching using an optimal feedback controller with and without explicit costs of kinematic asymmetry, finding that only the latter mirrored our empirical data. Our findings support the hypothesis that bimanual control policies do not include kinematic asymmetry as a cost when it is not demanded by task constraints suggesting that kinematic symmetry depends critically on mechanical movement conditions.NEW & NOTEWORTHY Previously, the control coupling hypothesis and task-dependent control hypothesis have been shown to be robust in the bimanually symmetrical movement, but whether the same policy remains robust in the bimanually asymmetrical movement remains unclear. Here, with evidence from empirical and simulation data, we show that a spatiotemporal symmetry between the arms is not predicated on control coupling, but instead it is predicated on the symmetry of mechanical conditions (e.g. limb inertia) between the arms.


Asunto(s)
Desempeño Psicomotor , Humanos , Desempeño Psicomotor/fisiología , Fenómenos Biomecánicos/fisiología , Masculino , Femenino , Adulto , Adulto Joven , Movimiento/fisiología , Mano/fisiología , Lateralidad Funcional/fisiología
3.
J Neurophysiol ; 130(3): 497-515, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37529832

RESUMEN

Prior research has shown that coordination of bilateral arm movements might be attributed to either control policies that minimize performance and control costs regardless of bilateral symmetry or by control coupling, which activates bilaterally homologous muscles as a single unit to achieve symmetric performance. We hypothesize that independent bimanual control (movements of one arm are performed without influence on the other) and codependent bimanual control (two arms are constrained to move together with high spatiotemporal symmetry) are two extremes on a coordination spectrum that can be negotiated to meet infinite variations in task demands. To better understand and distinguish between these views, we designed a task where minimization of either control costs or asymmetry would yield different patterns of coordination. Participants made bilateral reaches with a shared visual cursor to a midline target. We then covertly varied the gain contribution of either hand to the shared cursor's horizontal position. Across two experiments, we show that bilateral coordination retains high task-dependent sensitivity to subtle visual feedback gain asymmetries applied to the shared cursor. Specifically, we found a change from strong spatial covariation between hands during equal gains to more independent control during asymmetric gains, which occurred rapidly and with high specificity to the dimension of gain manipulation. Furthermore, the extent of spatial covariation was graded to the magnitude of perpendicular gain asymmetry between hands. These findings suggest coordination of bilateral arm movements flexibly maneuvers along a continuous coordination spectrum in a task-dependent manner that cannot be explained by bilateral control coupling.NEW & NOTEWORTHY Minimization of performance and control costs and efferent coupling between bilaterally homologous muscle groups have been separately hypothesized to describe patterns of bimanual coordination. Here, we address whether the mechanisms mediating independent and codependent control between limbs can be weighted for successful task performance. Using bilaterally asymmetric visuomotor gain perturbations, we show bimanual coordination can be characterized as a negotiation along a spectrum between extremes of independent and codependent control, but not efferent control coupling.


Asunto(s)
Lateralidad Funcional , Desempeño Psicomotor , Humanos , Desempeño Psicomotor/fisiología , Lateralidad Funcional/fisiología , Negociación , Movimiento/fisiología , Análisis y Desempeño de Tareas , Mano/fisiología
4.
Proc Natl Acad Sci U S A ; 120(6): e2212726120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36716370

RESUMEN

Human motor adaptability is of utmost utility after neurologic injury such as unilateral stroke. For successful adaptive control of movements, the nervous system must learn to correctly identify the source of a movement error and predictively compensate for this error. The current understanding is that in bimanual tasks, this process is flexible such that errors are assigned to, and compensated for, by the limb that is more likely to produce those errors. Here, we tested the flexibility of the error assignment process in right-handed chronic stroke survivors using a bimanual reaching task in which the hands jointly controlled a single cursor. We predicted that the nondominant left hand in neurotypical adults and the paretic hand in chronic stroke survivors will be more responsible for cursor errors and will compensate more within a trial and learn more from trial to trial. We found that in neurotypical adults, the nondominant left hand does compensate more than the right hand within a trial but learns less trial-to-trial. After a left hemisphere stroke, the paretic right hand compensates more than the nonparetic left hand within-trial but learns less trial-to-trial. After a right hemisphere stroke, the paretic left hand neither corrects more within-trial nor learns more trial-to-trial. Thus, adaptive control of visually guided bimanual reaching movements is reversed between hands after the left hemisphere stroke and lost following the right hemisphere stroke. These results indicate that responsibility assignment is not fully flexible but depends on a central mechanism that is lateralized to the right hemisphere.


Asunto(s)
Desempeño Psicomotor , Accidente Cerebrovascular , Adulto , Humanos , Desempeño Psicomotor/fisiología , Lateralidad Funcional/fisiología , Mano/fisiología , Movimiento
5.
BMC Neurol ; 22(1): 141, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35413856

RESUMEN

BACKGROUND: We previously characterized hemisphere-specific motor control deficits in the ipsilesional, less-impaired arm of unilaterally lesioned stroke survivors. Our preliminary data indicate these deficits are substantial and functionally limiting in patients with severe paresis. METHODS: We have designed an intervention ("IPSI") to remediate the hemisphere-specific deficits in the ipsilesional arm, using a virtual-reality platform, followed by manipulation training with a variety of real objects, designed to facilitate generalization and transfer to functional behaviors encountered in the natural environment. This is a 2-site (primary site - Penn State College of Medicine, secondary site - University of Southern California), two-group randomized intervention with an experimental group, which receives unilateral training of the ipsilesional arm throughout 3 one-hour sessions per week for 5 weeks, through our Virtual Reality and Manipulation Training (VRMT) protocol. Our control group receives a conventional intervention on the contralesional arm, 3 one-hour sessions per week for 5 weeks, guided by recently released practice guidelines for upper limb rehabilitation in adult stroke. The study aims to include a total of 120 stroke survivors (60 per group) whose stroke was in the territory of the middle cerebral artery (MCA) resulting in severe upper-extremity motor impairments. Outcome measures (Primary: Jebsen-Taylor Hand Function Test, Fugl-Meyer Assessment, Abilhand, Barthel Index) are assessed at five evaluation points: Baseline 1, Baseline 2, immediate post-intervention (primary endpoint), and 3-weeks (short-term retention) and 6-months post-intervention (long-term retention). We hypothesize that both groups will improve performance of the targeted arm, but that the ipsilesional arm remediation group will show greater improvements in functional independence. DISCUSSION: The results of this study are expected to inform upper limb evaluation and treatment to consider ipsilesional arm function, as part of a comprehensive physical rehabilitation strategy that includes evaluation and remediation of both arms. TRIAL REGISTRATION: This study is registered with ClinicalTrials.gov (Registration ID: NCT03634397 ; date of registration: 08/16/2018).


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Adulto , Ensayos Clínicos Fase II como Asunto , Estado Funcional , Humanos , Paresia/etiología , Recuperación de la Función , Accidente Cerebrovascular/terapia , Rehabilitación de Accidente Cerebrovascular/métodos , Resultado del Tratamiento , Extremidad Superior
6.
Front Integr Neurosci ; 16: 835852, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35264934

RESUMEN

Stopping is a crucial yet under-studied action for planning and producing meaningful and efficient movements. In this review, we discuss classical human psychophysics studies as well as those using engineered systems that aim to develop models of motor control of the upper limb. We present evidence for a hybrid model of motor control, which has an evolutionary advantage due to division of labor between cerebral hemispheres. Stopping is a fundamental aspect of movement that deserves more attention in research than it currently receives. Such research may provide a basis for understanding arm stabilization deficits that can occur following central nervous system (CNS) damage.

7.
Neuropsychologia ; 160: 107969, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34310971

RESUMEN

Loss of proprioception has been shown to produce deficits in intralimb coordination and in the ability to stabilize limb posture in the absence of visual feedback. However, the role of proprioceptive signals in the feedforward and feedback control of interlimb coordination remains unclear. To address this issue, we examined bimanual coordination in a deafferented participant (DP) with large-fiber sensory neuropathy, which resulted in the loss of proprioception and touch in both arms, and in age-matched control participants. The task required participants to move a single virtual bar with both hands to a rectangular target with horizontal orientation. The participants received visual feedback of the virtual bar, but not of the hand positions along the bar-axis. Although the task required symmetrical movement between the arms, there were significant differences in the trajectories of the dominant and non-dominant hands in the deafferented participant, and thus more final errors and impaired coordination compared to controls. Deafferentation was also associated with an asymmetric deficit in stabilizing the hand at the end of motion, where the dominant arm showed more drift than the non-dominant arm. While the findings with DP may reflect a unique adaptation to deafferentation, they suggest that 1) Bilateral coordination depends on proprioceptive feedback, and 2) Postural stability at the end of motion can be specified through feedforward mechanisms, in the absence of proprioceptive feedback, but this process appears to be asymmetric, with better stability in the non-dominant arm.


Asunto(s)
Propiocepción , Desempeño Psicomotor , Brazo , Mano , Humanos , Movimiento
8.
Front Hum Neurosci ; 15: 645714, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776672

RESUMEN

The ipsilesional arm of stroke patients often has functionally limiting deficits in motor control and dexterity that depend on the side of the brain that is lesioned and that increase with the severity of paretic arm impairment. However, remediation of the ipsilesional arm has yet to be integrated into the usual standard of care for upper limb rehabilitation in stroke, largely due to a lack of translational research examining the effects of ipsilesional-arm intervention. We now ask whether ipsilesional-arm training, tailored to the hemisphere-specific nature of ipsilesional-arm motor deficits in participants with moderate to severe contralesional paresis, improves ipsilesional arm performance and generalizes to improve functional independence. We assessed the effects of this intervention on ipsilesional arm unilateral performance [Jebsen-Taylor Hand Function Test (JHFT)], ipsilesional grip strength, contralesional arm impairment level [Fugl-Meyer Assessment (FM)], and functional independence [Functional independence measure (FIM)] (N = 13). Intervention occurred over a 3 week period for 1.5 h/session, three times each week. All sessions included virtual reality tasks that targeted the specific motor control deficits associated with either left or right hemisphere damage, followed by graded dexterity training in real-world tasks. We also exposed participants to 3 weeks of sham training to control for the non-specific effects of therapy visits and interactions. We conducted five test-sessions: two pre-tests and three post-tests. Our results indicate substantial improvements in the less-impaired arm performance, without detriment to the paretic arm that transferred to improved functional independence in all three posttests, indicating durability of training effects for at least 3 weeks. We provide evidence for establishing the basis of a rehabilitation approach that includes evaluation and remediation of the ipsilesional arm in moderately to severely impaired stroke survivors. This study was originally a crossover design; however, we were unable to complete the second arm of the study due to the COVID-19 pandemic. We report the results from the first arm of the planned design as a longitudinal study.

9.
J Mot Behav ; 53(2): 217-233, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32375601

RESUMEN

Previous research has revealed rapid feedback mediated responses in one arm to mechanical perturbations applied to the other arm during shared bimanual tasks. We now ask whether these interlimb responses are expressed symmetrically. We tested this question in a virtual reality environment: a cursor representing each hand was used to 'pick up' each end of a virtual bar and place it into a target trough. Near the onset of occasional, unpredictable trials, one arm was perturbed. Regardless of which arm was perturbed, ipsilateral responses were significant during the perturbation. However, responses in the arm contralateral to the perturbation were asymmetric. While the non-dominant arm showed a significant kinematic response to correct the bar orientation when the dominant arm was mechanically perturbed, the dominant arm did not respond when the non-dominant arm was perturbed. We also saw an asymmetric response in early EMG activity, in which only the non-dominant anterior deltoid showed a significant reflex response within 100 milliseconds of perturbation onset in response to dominant arm. This response was consistent with correcting the bar position, but not with correcting its orientation. We conclude that responses to perturbations during bilateral movements are expressed asymmetrically, such that non-dominant arm responses to perturbations to the dominant arm are stronger than dominant arm responses to non-dominant arm perturbations.


Asunto(s)
Retroalimentación Sensorial/fisiología , Lateralidad Funcional/fisiología , Movimiento/fisiología , Desempeño Psicomotor/fisiología , Adolescente , Adulto , Fenómenos Biomecánicos/fisiología , Electromiografía , Femenino , Mano/fisiología , Humanos , Masculino , Reflejo/fisiología , Adulto Joven
10.
Curr Opin Physiol ; 19: 141-147, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36569335

RESUMEN

Proprioception provides crucial information necessary for determining limb position and movement, and plausibly also for updating internal models that might underlie the control of movement and posture. Seminal studies of upper-limb movements in individuals living with chronic, large fiber deafferentation have provided evidence for the role of proprioceptive information in the hypothetical formation and maintenance of internal models to produce accurate motor commands. Vision also contributes to sensorimotor functions but cannot fully compensate for proprioceptive deficits. More recent work has shown that posture and movement control processes are lateralized in the brain, and that proprioception plays a fundamental role in coordinating the contributions of these processes to the control of goal-directed actions. In fact, the behavior of each limb in a deafferented individual resembles the action of a controller in isolation. Proprioception, thus, provides state estimates necessary for the nervous system to efficiently coordinate multiple motor control processes.

11.
Symmetry (Basel) ; 13(8)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38332947

RESUMEN

Typical upper limb-mediated activities of daily living involve coordination of both arms, often requiring distributed contributions to mechanically coupled tasks, such as stabilizing a loaf of bread with one hand while slicing with the other. We sought to examine whether mild paresis in one arm results in deficits in performance on a bilateral mechanically coupled task. We designed a virtual reality-based task requiring one hand to stabilize against a spring load that varies with displacement of the other arm. We recruited 15 chronic stroke survivors with mild hemiparesis and 7 age-matched neurologically intact adults. We found that stroke survivors produced less linear reaching movements and larger initial direction errors compared to controls (p < 0.05), and that contralesional hand performance was less linear than that of ipsilesional hand. We found a hand × group interaction (p < 0.05) for peak acceleration of the stabilizing hand, such that the dominant right hand of controls stabilized less effectively than the nondominant left hand while stroke survivors showed no differences between the hands. Our results indicate that chronic stroke survivors with mild hemiparesis show significant deficits in reaching aspects of bilateral coordination, but no deficits in stabilizing against a movement-dependent spring load in this task.

12.
Front Hum Neurosci ; 14: 599220, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33362495

RESUMEN

Chronic stroke survivors with severe contralesional arm paresis face numerous challenges to performing activities of daily living, which largely rely on the use of the less-affected ipsilesional arm. While use of the ipsilesional arm is often encouraged as a compensatory strategy in rehabilitation, substantial evidence indicates that motor control deficits in this arm can be functionally limiting, suggesting a role for remediation of this arm. Previous research has indicated that the nature of ipsilesional motor control deficits vary with hemisphere of damage and with the severity of contralesional paresis. Thus, in order to design rehabilitation that accounts for these deficits in promoting function, it is critical to understand the relative contributions of both ipsilesional and contralesional arm motor deficits to functional independence in stroke survivors with severe contralesional paresis. We now examine motor deficits in each arm of severely paretic chronic stroke survivors with unilateral damage (10 left-, 10 right-hemisphere damaged individuals) to determine whether hemisphere-dependent deficits are correlated with functional independence. Clinical evaluation of contralesional, paretic arm impairment was conducted with the upper extremity portion of the Fugl-Meyer assessment (UEFM). Ipsilesional arm motor performance was evaluated using the Jebsen-Taylor Hand Function Test (JTHFT), grip strength, and ipsilesional high-resolution kinematic analysis during a visually targeted reaching task. Functional independence was measured with the Barthel Index. Functional independence was better correlated with ipsilesional than contralesional arm motor performance in the left hemisphere damage group [JTHFT: [r (10) = -0.73, p = 0.017]; grip strength: [r (10) = 0.64, p = 0.047]], and by contralesional arm impairment in the right hemisphere damage group [UEFM: [r (10) = 0.66, p = 0.040]]. Ipsilesional arm kinematics were correlated with functional independence in the left hemisphere damage group only. Examination of hemisphere-dependent motor correlates of functional independence showed that ipsilesional arm deficits were important in determining functional outcomes in individuals with left hemisphere damage only, suggesting that functional independence in right hemisphere damaged participants was affected by other factors.

13.
Exp Brain Res ; 238(12): 2733-2744, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32970199

RESUMEN

Previous research has demonstrated hemisphere-specific motor deficits in ipsilesional and contralesional unimanual movements in patients with hemiparetic stroke due to MCA infarct. Due to the importance of bilateral motor actions on activities of daily living, we now examine how bilateral coordination may be differentially affected by right or left hemisphere stroke. To avoid the caveat of simply adding unimanual deficits in assessing bimanual coordination, we designed a unique task that requires spatiotemporal coordination features that do not exist in unimanual movements. Participants with unilateral left (LHD) or right hemisphere damage (RHD) and age-matched controls moved a virtual rectangle (bar) from a midline start position to a midline target. Movement along the long axis of the bar was redundant to the task, such that the bar remained in the center of and parallel to an imaginary line connecting each hand. Thus, to maintain midline position of the bar, movements of one hand closer to or further away from the bar midline required simultaneous, but oppositely directed displacements with the other hand. Our findings indicate that left (LHD), but not right (RHD) hemisphere-damaged patients showed poor interlimb coordination, reflected by significantly lower correlations between displacements of each hand along the bar axis. These left hemisphere-specific deficits were only apparent prior to peak velocity, likely reflecting predictive control of interlimb coordination. In contrast, the RHD group bilateral coordination was not significantly different than that of the control group. We conclude that predictive mechanisms that govern bilateral coordination are dependent on left hemisphere mechanisms. These findings indicate that assessment and training in cooperative bimanual tasks should be considered as part of an intervention framework for post-stroke physical rehabilitation.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Actividades Cotidianas , Lateralidad Funcional , Mano , Humanos , Movimiento , Desempeño Psicomotor , Accidente Cerebrovascular/complicaciones
14.
Int J Orthop ; 3(1)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32346675

RESUMEN

AIMS: There is a subset of scapula fractures, which can be considered in the "gray zone," where treatment guidelines are not clear-cut, based on published literature. Our paper presents the outcomes of five such scapula fractures treated non-operatively. METHODS: Adult patients who had been treated non-operatively at our institution for an isolated scapula fracture from 2003-2012 were found using Current Procedural Terminology (CPT) codes. Based on injury imaging, these five patients had scapula fractures in the "gray zone."Subjects completed questionnaires [Simple Shoulder Test (SST), PROMIS Global Health Scale vs 1.1, PROMIS SF vs 1.0 Physical Function 12a, and the American Shoulder and Elbow Surgeons Score (ASES)] and physical exams were performed to assess range of motion and strength. Glenohumeral kinematics were obtained via motion analysis using the Trackstar 6 Degree of Freedom (DOF) motion tracking system by Northern Digital Incorporated. RESULTS: All subjects were right hand dominant. 3/5 fractures involved left, non-dominant, scapulae. Motion analysis demonstrated similar recruitment of the scapula during the glenohumeral rhythm for the fractured shoulders compared with the same arm of age matched control subjects. No significant differences occurred in either range of motion (ROM) or scapula-humeral coordination when comparing uninjured scapulae to the same arm of age matched control subjects. CONCLUSIONS: All subjects' demonstrated acceptable clinical outcomes when treated non-operatively. Minor differences were seen in subjective surveys. However, the kinematic analysis showed no differences in measured scapula-humeral rhythm or range of motion. It is proposed that immediate controlled range of motion and rehabilitation be considered in these patients and could be the focus of a larger prospective study. LEVEL OF EVIDENCE: Level IV (Case Series).

15.
J Neurophysiol ; 123(4): 1295-1304, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31913762

RESUMEN

We previously demonstrated that lateralization in the neural control of predictive and impedance mechanisms is reflected by interlimb differences in control of bilateral tasks. Aging has been shown to reduce lateralization during unilateral performance, presumably due to greater recruitment of the ipsilateral hemisphere. We now hypothesize that aging-related reduction in the efficiency of neural resources should produce greater behavioral asymmetry during bilateral actions that require hemispheric specialization for each arm. This is because simultaneous control of dominant and nondominant arm function should induce competition for hemisphere-specific resources. To test this hypothesis, we now examine the effect of aging (young, n = 20; old, n = 20) on performance of a mechanically coupled task, in which one arm reaches toward targets while the other arm stabilizes against a spring that connects the two arms. Results indicate better dominant arm reaching performance and better nondominant arm stabilizing performance for both groups. Most notably, limb and joint compliance was lower in the dominant arm, leading to dominant arm deficits in stabilizing performance. Group analysis indicated that older adults showed substantially greater asymmetry in stabilizing against the spring load than did the younger adults. We propose that competition for limited neural resources in older adults is associated with reduced contributions of right hemisphere mechanisms to right-dominant arm stabilizing performance, and thus to greater asymmetry of performance.NEW & NOTEWORTHY We provide evidence for greater asymmetry of interlimb differences in bilateral coordination for stabilizing and preserved asymmetry of reaching with aging. These results provide the first evidence for increased lateralization with aging within the context of a complementary bilateral task.


Asunto(s)
Envejecimiento/fisiología , Brazo/fisiología , Lateralidad Funcional/fisiología , Actividad Motora/fisiología , Desempeño Psicomotor/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Adulto Joven
16.
Neurorehabil Neural Repair ; 34(1): 39-50, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31538852

RESUMEN

Background. Previous research has detailed the hemisphere dependence and specific kinematic deficits observed for the less-affected arm of patients with unilateral stroke. Objective. We now examine whether functional motor deficits in the less-affected arm, measured by standardized clinical measures of motor function, also depend on the hemisphere that was damaged and on the severity of contralesional impairment. Methods. We recruited 48 left-hemisphere-damaged (LHD) participants, 62 right-hemisphere-damaged participants, and 54 age-matched control participants. Measures of motor function included the following: (1) Jebsen-Taylor Hand Function Test (JHFT), (2) Grooved Pegboard Test (GPT), and (3) grip strength. We measured the extent of contralesional arm impairment with the upper-extremity component of the Fugl-Meyer (UEFM) assessment of motor impairment. Results. Ipsilesional limb functional performance deficits (JHFT) varied with both the damaged hemisphere and severity of contralesional arm impairment, with the most severe deficits expressed in LHD participants with severe contralesional impairment (UEFM). GPT and grip strength varied with severity of contralesional impairment but not with hemisphere. Conclusions. Stroke survivors with the most severe paretic arm impairment, who must rely on their ipsilesional arm for performing daily activities, have the greatest motor deficit in the less-affected arm. We recommend remediation of this arm to improve functional independence in this group of stroke patients.


Asunto(s)
Lateralidad Funcional/fisiología , Paresia/patología , Paresia/fisiopatología , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología , Extremidad Superior/fisiopatología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fuerza Muscular/fisiología , Paresia/etiología , Desempeño Psicomotor/fisiología , Índice de Severidad de la Enfermedad , Accidente Cerebrovascular/complicaciones
17.
Exp Brain Res ; 237(2): 389-399, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30415290

RESUMEN

Previous studies have proposed that selecting which hand to use for a reaching task appears to be modulated by a factor described as "task difficulty," defined by either the requirement for spatial precision or movement sequences. However, we previously reported that analysis of the movement costs associated with even simple movements plays a major role in hand selection. We further demonstrated, in right-handers, that cognitive-perceptual loading modulates hand selection by interfering with the analysis of such costs. It has been reported that left-handers tend to show less dominant hand bias in selecting which hand to use during reaching. We, therefore, hypothesized that hand selection would be less affected by cognitive-perceptual loading in left-handers than in right-handers. We employed a visual search task that presented different levels of difficulty (cognitive-perceptual load), as established in previous studies. Our findings indicate that left-handed participants tend to show greater modulation of hand selection by cognitive-perceptual loading than right-handers. Left-handers showed lower dominant hand reaction times than right-handers, and greater high-cost movements that reached to extremes of the contralateral workspace under the most difficult task conditions. We previously showed in this task that midline crossing has high-energy and time costs and that they occur more frequently under cognitively demanding conditions. The current study revealed that midline crossing was associated with the lowest reaction times, in both handedness groups. The fact that left-handers showed lower dominant hand reaction times, and a greater number of high-cost cross-midline reaches under the most cognitively demanding conditions suggests that these actions were erroneous.


Asunto(s)
Lateralidad Funcional/fisiología , Mano/fisiología , Actividad Motora/fisiología , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Adulto , Femenino , Humanos , Masculino , Adulto Joven
18.
J Neurophysiol ; 120(2): 729-740, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29742023

RESUMEN

Two contrasting views of handedness can be described as 1) complementary dominance, in which each hemisphere is specialized for different aspects of motor control, and 2) global dominance, in which the hemisphere contralateral to the dominant arm is specialized for all aspects of motor control. The present study sought to determine which motor lateralization hypothesis best predicts motor performance during common bilateral task of stabilizing an object (e.g., bread) with one hand while applying forces to the object (e.g., slicing) using the other hand. We designed an experimental equivalent of this task, performed in a virtual environment with the unseen arms supported by frictionless air-sleds. The hands were connected by a spring, and the task was to maintain the position of one hand while moving the other hand to a target. Thus the reaching hand was required to take account of the spring load to make smooth and accurate trajectories, while the stabilizer hand was required to impede the spring load to keep a constant position. Right-handed subjects performed two task sessions (right-hand reach and left-hand stabilize; left-hand reach and right-hand stabilize) with the order of the sessions counterbalanced between groups. Our results indicate a hand by task-component interaction such that the right hand showed straighter reaching performance whereas the left hand showed more stable holding performance. These findings provide support for the complementary dominance hypothesis and suggest that the specializations of each cerebral hemisphere for impedance and dynamic control mechanisms are expressed during bilateral interactive tasks. NEW & NOTEWORTHY We provide evidence for interlimb differences in bilateral coordination of reaching and stabilizing functions, demonstrating an advantage for the dominant and nondominant arms for distinct features of control. These results provide the first evidence for complementary specializations of each limb-hemisphere system for different aspects of control within the context of a complementary bilateral task.


Asunto(s)
Brazo/fisiología , Lateralidad Funcional , Mano/fisiología , Movimiento , Desempeño Psicomotor , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Modelos Neurológicos , Adulto Joven
19.
Neuroscience ; 369: 363-373, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29129794

RESUMEN

Previous studies proposed that selecting which hand to use for a reaching task appears to be modulated by a factor described as "task difficulty". However, what features of a task might contribute to greater or lesser "difficulty" in the context of hand selection decisions has yet to be determined. There has been evidence that biomechanical and kinematic factors such as movement smoothness and work can predict patterns of selection across the workspace, suggesting a role of predictive cost analysis in hand-selection. We hypothesize that this type of prediction for hand-selection should recruit substantial cognitive resources and thus should be influenced by cognitive-perceptual loading. We test this hypothesis by assessing the role of cognitive-perceptual loading on hand selection decisions, using a visual search task that presents different levels of difficulty (cognitive-perceptual load), as established in previous studies on overall response time and efficiency of visual search. Although the data are necessarily preliminary due to small sample size, our data suggested an influence of cognitive-perceptual load on hand selection, such that the dominant hand was selected more frequently as cognitive load increased. Interestingly, cognitive-perceptual loading also increased cross-midline reaches with both hands. Because crossing midline is more costly in terms of kinematic and kinetic factors, our findings suggest that cognitive processes are normally engaged to avoid costly actions, and that the choice not-to-cross midline requires cognitive resources.


Asunto(s)
Cognición , Lateralidad Funcional , Mano , Actividad Motora , Desempeño Psicomotor , Percepción Visual , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Adulto Joven
20.
Neuroscience ; 350: 54-64, 2017 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-28344068

RESUMEN

Previous research suggests that interlimb differences in coordination associated with handedness might result from specialized control mechanisms that are subserved by different cerebral hemispheres. Based largely on the results of horizontal plane reaching studies, we have proposed that the hemisphere contralateral to the dominant arm is specialized for predictive control of limb dynamics, while the non-dominant hemisphere is specialized for controlling limb impedance. The current study explores interlimb differences in control of 3-D unsupported reaching movements. While the task was presented in the horizontal plane, participant's arms were unsupported and free to move within a range of the vertical axis, which was redundant to the task plane. Results indicated significant dominant arm advantages for both initial direction accuracy and final position accuracy. The dominant arm showed greater excursion along a redundant axis that was perpendicular to the task, and parallel to gravitational forces. In contrast, the non-dominant arm better impeded motion out of the task-plane. Nevertheless, non-dominant arm task errors varied substantially more with shoulder rotation excursion than did dominant arm task errors. These findings suggest that the dominant arm controller was able to take advantage of the redundant degrees of freedom of the task, while non-dominant task errors appeared enslaved to motion along the redundant axis. These findings are consistent with a dominant controller that is specialized for intersegmental coordination, and a non-dominant controller that is specialized for impedance control. However, the findings are inconsistent with previously documented conclusions from planar tasks, in which non-dominant control leads to greater final position accuracy.


Asunto(s)
Brazo/fisiología , Fenómenos Biomecánicos/fisiología , Movimiento/fisiología , Desempeño Psicomotor/fisiología , Adulto , Articulación del Codo/fisiología , Lateralidad Funcional/fisiología , Humanos , Postura/fisiología , Rotación , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...