Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 2389, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29921864

RESUMEN

Early during PNS regeneration, regenerating axons emerge from the proximal nerve stump, yet whether they extend simultaneously or whether pioneering axons establish a path for follower axons remains unknown. Moreover, the molecular mechanisms underlying robust regeneration are incompletely understood. Using live imaging, we demonstrate that in zebrafish pioneering axons establish a regenerative path for follower axons. We find this process requires the synaptic receptor lrp4, and in lrp4 mutants pioneers are unaffected while follower axons frequently stall at the injury gap, providing evidence for molecular diversity between pioneering and follower axons in regeneration. We demonstrate that Lrp4 promotes regeneration through an axon extrinsic mechanism and independent of membrane anchoring and MuSK co-receptor signaling essential for synaptic development. Finally, we show that Lrp4 coordinates the realignment of denervated Schwann cells with regenerating axons, consistent with a model by which Lrp4 is repurposed to promote sustained peripheral nerve regeneration via axon-glia interactions.


Asunto(s)
Proteínas Relacionadas con Receptor de LDL/metabolismo , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Axones/fisiología , Proteínas de Homeodominio , Proteínas Relacionadas con Receptor de LDL/genética , Microscopía Confocal , Mutación , Neuroglía/metabolismo , Neuroglía/fisiología , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/fisiopatología , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Células de Schwann/metabolismo , Células de Schwann/fisiología , Imagen de Lapso de Tiempo , Pez Cebra , Proteínas de Pez Cebra/genética
2.
Proc Natl Acad Sci U S A ; 112(9): 2859-64, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25691753

RESUMEN

Following their synthesis in the endoplasmic reticulum (ER), voltage-gated sodium channels (NaV) are transported to the membranes of excitable cells, where they often cluster, such as at the axon initial segment of neurons. Although the mechanisms by which NaV channels form and maintain clusters have been extensively examined, the processes that govern their transport and degradation have received less attention. Our entry into the study of these processes began with the isolation of a new allele of the zebrafish mutant alligator, which we found to be caused by mutations in the gene encoding really interesting new gene (RING) finger protein 121 (RNF121), an E3-ubiquitin ligase present in the ER and cis-Golgi compartments. Here we demonstrate that RNF121 facilitates two opposing fates of NaV channels: (i) ubiquitin-mediated proteasome degradation and (ii) membrane localization when coexpressed with auxiliary NaVß subunits. Collectively, these results indicate that RNF121 participates in the quality control of NaV channels during their synthesis and subsequent transport to the membrane.


Asunto(s)
Proteolisis , Dominios RING Finger , Ubiquitina-Proteína Ligasas/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Secuencia de Bases , Membrana Celular/genética , Membrana Celular/metabolismo , Datos de Secuencia Molecular , Mutación , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de Proteínas/fisiología , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Canales de Sodio Activados por Voltaje/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
3.
J Neurosci ; 34(29): 9644-55, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-25031404

RESUMEN

Spontaneous network activity is a highly stereotyped early feature of developing circuits throughout the nervous system, including in the spinal cord. Spinal locomotor circuits produce a series of behaviors during development before locomotion that reflect the continual integration of spinal neurons into a functional network, but how the circuitry is reconfigured is not understood. The first behavior of the zebrafish embryo (spontaneous coiling) is mediated by an electrical circuit that subsequently generates mature locomotion (swimming) as chemical neurotransmission develops. We describe here a new spontaneous behavior, double coiling, that consists of two alternating contractions of the tail in rapid succession. Double coiling was glutamate-dependent and required descending hindbrain excitation, similar to but preceding swimming, making it a discrete intermediary developmental behavior. At the cellular level, motoneurons had a distinctive glutamate-dependent activity pattern that correlated with double coiling. Two glutamatergic interneurons, CoPAs and CiDs, had different activity profiles during this novel behavior. CoPA neurons failed to show changes in activity patterns during the period in which double coiling appears, whereas CiD neurons developed a glutamate-dependent activity pattern that correlated with double coiling and they innervated motoneurons at that time. Additionally, double coils were modified after pharmacological reduction of glycinergic neurotransmission such that embryos produced three or more rapidly alternating coils. We propose that double coiling behavior represents an important transition of the motor network from an electrically coupled spinal cord circuit that produces simple periodic coils to a spinal network driven by descending chemical neurotransmission, which generates more complex behaviors.


Asunto(s)
Actividad Motora/fisiología , Neuronas Motoras/fisiología , Red Nerviosa/fisiología , Médula Espinal/citología , Sinapsis/fisiología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Animales Modificados Genéticamente , Proteínas de Unión al ADN/genética , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Embrión no Mamífero , Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Actividad Motora/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Red Nerviosa/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/embriología , Rombencéfalo/fisiología , Médula Espinal/embriología , Sinapsis/clasificación , Sinapsis/efectos de los fármacos , Factores de Transcripción/genética , Valina/análogos & derivados , Valina/farmacología , Pez Cebra , Proteínas de Pez Cebra/genética
4.
Nat Commun ; 4: 1952, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23736855

RESUMEN

Excitation-contraction coupling, the process that regulates contractions by skeletal muscles, transduces changes in membrane voltage by activating release of Ca(2+) from internal stores to initiate muscle contraction. Defects in excitation-contraction coupling are associated with muscle diseases. Here we identify Stac3 as a novel component of the excitation-contraction coupling machinery. Using a zebrafish genetic screen, we generate a locomotor mutation that is mapped to stac3. We provide electrophysiological, Ca(2+) imaging, immunocytochemical and biochemical evidence that Stac3 participates in excitation-contraction coupling in muscles. Furthermore, we reveal that a mutation in human STAC3 is the genetic basis of the debilitating Native American myopathy (NAM). Analysis of NAM stac3 in zebrafish shows that the NAM mutation decreases excitation-contraction coupling. These findings enhance our understanding of both excitation-contraction coupling and the pathology of myopathies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Fisura del Paladar/genética , Fisura del Paladar/fisiopatología , Acoplamiento Excitación-Contracción , Hipertermia Maligna/genética , Hipertermia Maligna/fisiopatología , Mutación/genética , Miotonía Congénita/genética , Miotonía Congénita/fisiopatología , Proteínas del Tejido Nervioso/genética , Proteínas de Pez Cebra/genética , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Embrión no Mamífero/metabolismo , Humanos , Datos de Secuencia Molecular , Mutación Missense/genética , Miofibrillas/metabolismo , Miofibrillas/ultraestructura , Miotonía Congénita/patología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Especificidad de Órganos/genética , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Natación , Tacto , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
5.
J Neurosci ; 33(9): 3834-43, 2013 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-23447595

RESUMEN

Nonvisual photosensation enables animals to sense light without sight. However, the cellular and molecular mechanisms of nonvisual photobehaviors are poorly understood, especially in vertebrate animals. Here, we describe the photomotor response (PMR), a robust and reproducible series of motor behaviors in zebrafish that is elicited by visual wavelengths of light but does not require the eyes, pineal gland, or other canonical deep-brain photoreceptive organs. Unlike the relatively slow effects of canonical nonvisual pathways, motor circuits are strongly and quickly (seconds) recruited during the PMR behavior. We find that the hindbrain is both necessary and sufficient to drive these behaviors. Using in vivo calcium imaging, we identify a discrete set of neurons within the hindbrain whose responses to light mirror the PMR behavior. Pharmacological inhibition of the visual cycle blocks PMR behaviors, suggesting that opsin-based photoreceptors control this behavior. These data represent the first known light-sensing circuit in the vertebrate hindbrain.


Asunto(s)
Movimiento/fisiología , Opsinas/metabolismo , Células Fotorreceptoras de Vertebrados/fisiología , Rombencéfalo/citología , Conducta Estereotipada/fisiología , Factores de Edad , Análisis de Varianza , Animales , Fenómenos Biomecánicos , Biofisica , Calcio/metabolismo , Embrión no Mamífero , Femenino , Masculino , Microscopía Confocal , Morfolinos/farmacología , Movimiento/efectos de los fármacos , Movimiento/efectos de la radiación , Células Musculares/efectos de los fármacos , Células Musculares/efectos de la radiación , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Vías Nerviosas/efectos de la radiación , Opsinas/química , Estimulación Luminosa , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/efectos de la radiación , Rombencéfalo/fisiología , Conducta Estereotipada/efectos de los fármacos , Conducta Estereotipada/efectos de la radiación , Factores de Tiempo , Pez Cebra
6.
J Neurophysiol ; 108(1): 148-59, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22490555

RESUMEN

The molecular and physiological basis of the touch-unresponsive zebrafish mutant fakir has remained elusive. Here we report that the fakir phenotype is caused by a missense mutation in the gene encoding voltage-gated calcium channel 2.1b (CACNA1Ab). Injection of RNA encoding wild-type CaV2.1 restores touch responsiveness in fakir mutants, whereas knockdown of CACNA1Ab via morpholino oligonucleotides recapitulates the fakir mutant phenotype. Fakir mutants display normal current-evoked synaptic communication at the neuromuscular junction but have attenuated touch-evoked activation of motor neurons. NMDA-evoked fictive swimming is not affected by the loss of CaV2.1b, suggesting that this channel is not required for motor pattern generation. These results, coupled with the expression of CACNA1Ab by sensory neurons, suggest that CaV2.1b channel activity is necessary for touch-evoked activation of the locomotor network in zebrafish.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Activación del Canal Iónico/genética , Tacto/genética , Acetilcolina/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Vías Aferentes/fisiología , Animales , Animales Modificados Genéticamente , Bungarotoxinas/metabolismo , Canales de Calcio Tipo N/genética , Curare/farmacología , Relación Dosis-Respuesta a Droga , Embrión no Mamífero , Reacción de Fuga/efectos de los fármacos , Reacción de Fuga/fisiología , Potenciales Evocados/genética , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Leucina/genética , Locomoción/efectos de los fármacos , Locomoción/genética , Modelos Moleculares , Morfolinas/farmacología , Actividad Motora/genética , Neuronas Motoras/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Mutagénesis Sitio-Dirigida/métodos , Mutación/genética , Mutación Missense/genética , Red Nerviosa/fisiología , Antagonistas Nicotínicos/farmacología , Médula Espinal/citología , Médula Espinal/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Tacto/fisiología , Valina/genética , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
J Biol Chem ; 287(2): 1080-9, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22075003

RESUMEN

In many tissues and organs, connexin proteins assemble between neighboring cells to form gap junctions. These gap junctions facilitate direct intercellular communication between adjoining cells, allowing for the transmission of both chemical and electrical signals. In rodents, gap junctions are found in differentiating myoblasts and are important for myogenesis. Although gap junctions were once believed to be absent from differentiated skeletal muscle in mammals, recent studies in teleosts revealed that differentiated muscle does express connexins and is electrically coupled, at least at the larval stage. These findings raised questions regarding the functional significance of gap junctions in differentiated muscle. Our analysis of gap junctions in muscle began with the isolation of a zebrafish motor mutant that displayed weak coiling at day 1 of development, a behavior known to be driven by slow-twitch muscle (slow muscle). We identified a missense mutation in the gene encoding Connexin 39.9. In situ hybridization found connexin 39.9 to be expressed by slow muscle. Paired muscle recordings uncovered that wild-type slow muscles are electrically coupled, whereas mutant slow muscles are not. The further examination of cellular activity revealed aberrant, arrhythmic touch-evoked Ca(2+) transients in mutant slow muscle and a reduction in the number of muscle fibers contracting in response to touch in mutants. These results indicate that Connexin 39.9 facilitates the spreading of neuronal inputs, which is irregular during motor development, beyond the muscle cells and that gap junctions play an essential role in the efficient recruitment of slow muscle fibers.


Asunto(s)
Conexinas/metabolismo , Proteínas Musculares/metabolismo , Mutación Missense , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Secuencia de Bases , Conexinas/genética , Uniones Comunicantes/genética , Uniones Comunicantes/metabolismo , Regulación de la Expresión Génica/genética , Datos de Secuencia Molecular , Fibras Musculares de Contracción Lenta , Proteínas Musculares/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
8.
J Neurosci ; 31(32): 11633-44, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21832193

RESUMEN

Mutations in the gene encoding TRPM7 (trpm7), a member of the Transient Receptor Potential (TRP) superfamily of cation channels that possesses an enzymatically active kinase at its C terminus, cause the touch-unresponsive zebrafish mutant touchdown. We identified and characterized a new allele of touchdown, as well as two previously reported alleles, and found that all three alleles harbor mutations that abolish channel activity. Through the selective restoration of TRPM7 expression in sensory neurons, we found that TRPM7's kinase activity and selectivity for divalent cations over monovalent cations were dispensable for touch-evoked activation of escape behaviors in zebrafish. Additional characterization revealed that sensory neurons were present and capable of responding to tactile stimuli in touchdown mutants, indicating that TRPM7 is not required for sensory neuron survival or mechanosensation. Finally, exposure to elevated concentrations of divalent cations was found to restore touch-evoked behaviors in touchdown mutants. Collectively, these findings are consistent with a role for zebrafish TRPM7 within sensory neurons in the modulation of neurotransmitter release at central synapses, similar to that proposed for mammalian TRPM7 at peripheral synapses.


Asunto(s)
Alelos , Reacción de Fuga/fisiología , Células Receptoras Sensoriales/fisiología , Canales Catiónicos TRPM/fisiología , Tacto/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Femenino , Sistema Nervioso Periférico/citología , Sistema Nervioso Periférico/metabolismo , Sistema Nervioso Periférico/fisiología , Proteínas Serina-Treonina Quinasas , Especificidad de la Especie , Canales Catiónicos TRPM/genética , Tacto/genética , Xenopus , Pez Cebra , Proteínas de Pez Cebra/genética
9.
Brain ; 134(Pt 2): 602-7, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21115467

RESUMEN

Autosomal dominant sensory ataxia is a rare genetic condition that results in a progressive ataxia that is caused by degeneration of the posterior columns of the spinal cord. To date only two families have been clinically ascertained with this condition, both from Maritime Canada. We previously mapped both families to chromosome 8p12-8q12 and have now screened the majority of annotated protein-coding genes in the shared haplotype region by direct DNA sequencing. We have identified a putative pathogenic mutation in the gene encoding ring-finger protein RNF170, a potential ubiquitin ligase. This mutation is a rare non-synonymous change in a well-conserved residue and is predicted to be pathogenic by SIFT, PolyPhen, PANTHER and Align-GVD. Microinjection of wild-type or mutant orthologous messenger RNAs into zebrafish (Danio rerio) embryos confirmed that the mutation dominantly disrupts normal embryonic development. Together these results suggest that the mutation in RNF170 is causal for the sensory ataxia in these families.


Asunto(s)
Ataxia/genética , Mutación Missense , Ubiquitina-Proteína Ligasas/genética , Secuencia de Aminoácidos , Animales , Ataxia/metabolismo , Muerte Celular/efectos de los fármacos , Variaciones en el Número de Copia de ADN , Técnicas de Silenciamiento del Gen/métodos , Humanos , Oligodesoxirribonucleótidos Antisentido/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Pez Cebra
10.
Prog Brain Res ; 187: 47-61, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21111200

RESUMEN

The nervous system can generate rhythms of various frequencies; on the low-frequency side, we have the circuits regulating circadian rhythms with a 24-h period, while on the high-frequency side we have the motor circuits that underlie flight in a hummingbird. Given the ubiquitous nature of rhythms, it is surprising that we know very little of the cellular and molecular mechanisms that produce them in the embryos and of their potential role during the development of neuronal circuits. Recently, zebrafish has been developed as a vertebrate model to study the genetics of neural development. Zebrafish offer several advantages to the study of nervous system development including optical and electrophysiological analysis of neuronal activity even at the earliest embryonic stages. This unique combination of physiology and genetics in the same animal model has led to insights into the development of neuronal networks. This chapter reviews work on the development of zebrafish motor rhythms and speculates on birth and maturation of the circuits that produce them.


Asunto(s)
Actividad Motora/fisiología , Periodicidad , Pez Cebra/embriología , Pez Cebra/fisiología , Animales , Embrión no Mamífero/fisiología , Mutación , Médula Espinal/anatomía & histología , Médula Espinal/fisiología
11.
J Neurosci ; 30(28): 9359-67, 2010 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-20631165

RESUMEN

The process by which light touch in vertebrates is transformed into an electrical response in cutaneous mechanosensitive neurons is a largely unresolved question. To address this question we undertook a forward genetic screen in zebrafish (Danio rerio) to identify mutants exhibiting abnormal touch-evoked behaviors, despite the presence of sensory neurons and peripheral neurites. One family, subsequently named touché, was found to harbor a recessive mutation which produced offspring that were unresponsive to light touch, but responded to a variety of other sensory stimuli. The optogenetic activation of motor behaviors by touché mutant sensory neurons expressing channelrhodopsin-2 suggested that the synaptic output of sensory neurons was intact, consistent with a defect in sensory neuron activation. To explore sensory neuron activation we developed an in vivo preparation permitting the precise placement of a combined electrical and tactile stimulating probe upon eGFP-positive peripheral neurites. In wild-type larva electrical and tactile stimulation of peripheral neurites produced action potentials detectable within the cell body. In a subset of these sensory neurons an underlying generator potential could be observed in response to subthreshold tactile stimuli. A closer examination revealed that the amplitude of the generator potential was proportional to the stimulus amplitude. When assayed touché mutant sensory neurons also responded to electrical stimulation of peripheral neurites similar to wild-type larvae, however tactile stimulation of these neurites failed to uncover a subset of sensory neurons possessing generator potentials. These findings suggest that touché is required for generator potentials, and that cutaneous mechanoreceptors with generator potentials are necessary for responsiveness to light touch in zebrafish.


Asunto(s)
Potenciales Evocados Somatosensoriales/fisiología , Células Receptoras Sensoriales/fisiología , Transducción de Señal/fisiología , Tacto/fisiología , Proteínas de Pez Cebra/genética , Animales , Electrofisiología , Red Nerviosa/fisiología , Neuronas Aferentes/fisiología , Estimulación Física , Pez Cebra/genética
12.
Development ; 137(10): 1689-98, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20392743

RESUMEN

In zebrafish, Rohon-Beard (RB) neurons are primary sensory neurons present during the embryonic and early larval stages. At 2 days post-fertilization (dpf), wild-type zebrafish embryos respond to mechanosensory stimulation and swim away from the stimuli, whereas mi310 mutants are insensitive to touch. During approximately 2-4 dpf, wild-type RB neurons undergo programmed cell death, which is caused by sodium current-mediated electrical activity, whereas mutant RB cells survive past 4 dpf, suggesting a defect of sodium currents in the mutants. Indeed, electrophysiological recordings demonstrated the generation of action potentials in wild-type RB neurons, whereas mutant RB cells failed to fire owing to the reduction of voltage-gated sodium currents. Labeling of dissociated RB neurons with an antibody against voltage-gated sodium channels revealed that sodium channels are expressed at the cell surface in wild-type, but not mutant, RB neurons. Finally, in mi310 mutants, we identified a mis-sense mutation in pigu, a subunit of GPI (glycosylphosphatidylinositol) transamidase, which is essential for membrane anchoring of GPI-anchored proteins. Taken together, biogenesis of GPI-anchored proteins is necessary for cell surface expression of sodium channels and thus for firings of RB neurons, which enable zebrafish embryos to respond to mechanosensory stimulation.


Asunto(s)
Glicosilfosfatidilinositoles/metabolismo , Mecanotransducción Celular/genética , Proteínas de la Membrana/biosíntesis , Células Receptoras Sensoriales/metabolismo , Canales de Sodio/metabolismo , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Antígenos de Superficie/metabolismo , Células CHO , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Muerte Celular/fisiología , Cricetinae , Cricetulus , Embrión no Mamífero , Técnicas de Silenciamiento del Gen , Glicosilfosfatidilinositoles/biosíntesis , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Estimulación Física , ARN Interferente Pequeño/farmacología , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Pez Cebra/embriología , Pez Cebra/metabolismo
13.
Dev Neurobiol ; 70(7): 508-22, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20225246

RESUMEN

A screen for zebrafish motor mutants identified two noncomplementing alleles of a recessive mutation that were named non-active (nav(mi89) and nav(mi130)). nav embryos displayed diminished spontaneous and touch-evoked escape behaviors during the first 3 days of development. Genetic mapping identified the gene encoding Na(V)1.6a (scn8aa) as a potential candidate for nav. Subsequent cloning of scn8aa from the two alleles of nav uncovered two missense mutations in Na(V)1.6a that eliminated channel activity when assayed heterologously. Furthermore, the injection of RNA encoding wild-type scn8aa rescued the nav mutant phenotype indicating that scn8aa was the causative gene of nav. In-vivo electrophysiological analysis of the touch-evoked escape circuit indicated that voltage-dependent inward current was decreased in mechanosensory neurons in mutants, but they were able to fire action potentials. Furthermore, tactile stimulation of mutants activated some neurons downstream of mechanosensory neurons but failed to activate the swim locomotor circuit in accord with the behavioral response of initial escape contractions but no swimming. Thus, mutant mechanosensory neurons appeared to respond to tactile stimulation but failed to initiate swimming. Interestingly fictive swimming could be initiated pharmacologically suggesting that a swim circuit was present in mutants. These results suggested that Na(V)1.6a was required for touch-induced activation of the swim locomotor network.


Asunto(s)
Sistema Nervioso Central/embriología , Red Nerviosa/embriología , Canales de Sodio/fisiología , Natación/fisiología , Tacto/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Animales , Conducta Animal/fisiología , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Mapeo Cromosómico , Femenino , Masculino , Mecanorreceptores/citología , Mecanorreceptores/metabolismo , Mutagénesis Sitio-Dirigida , Mutación Missense/genética , Canal de Sodio Activado por Voltaje NAV1.6 , Red Nerviosa/crecimiento & desarrollo , Red Nerviosa/metabolismo , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo , Canales de Sodio/genética , Tacto/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética
14.
Dev Neurobiol ; 69(12): 780-95, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19634126

RESUMEN

Characterizing connectivity in the spinal cord of zebrafish embryos is not only prerequisite to understanding the development of locomotion, but is also necessary for maximizing the potential of genetic studies of circuit formation in this model system. During their first day of development, zebrafish embryos show two simple motor behaviors. First, they coil their trunks spontaneously, and a few hours later they start responding to touch with contralateral coils. These behaviors are contemporaneous until spontaneous coils become infrequent by 30 h. Glutamatergic neurons are distributed throughout the embryonic spinal cord, but their contribution to these early motor behaviors in immature zebrafish is still unclear. We demonstrate that the kinetics of spontaneous coiling and touch-evoked responses show distinct developmental time courses and that the touch response is dependent on AMPA-type glutamate receptor activation. Transection experiments suggest that the circuits required for touch-evoked responses are confined to the spinal cord and that only the most rostral part of the spinal cord is sufficient for triggering the full response. This rostral sensory connection is presumably established via CoPA interneurons, as they project to the rostral spinal cord. Electrophysiological analysis demonstrates that these neurons receive short latency AMPA-type glutamatergic inputs in response to ipsilateral tactile stimuli. We conclude that touch responses in early embryonic zebrafish arise only after glutamatergic synapses connect sensory neurons and interneurons to the contralateral motor network via a rostral loop. This helps define an elementary circuit that is modified by the addition of sensory inputs, resulting in behavioral transformation.


Asunto(s)
Reacción de Fuga/fisiología , Ácido Glutámico/metabolismo , Receptores AMPA/metabolismo , Reflejo/fisiología , Médula Espinal/fisiología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Maleato de Dizocilpina/farmacología , Electrofisiología , Embrión no Mamífero , Reacción de Fuga/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Inmunohistoquímica , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Reflejo/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/embriología , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Natación/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/fisiología , Pez Cebra
15.
Nat Genet ; 41(6): 651-3, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19412178

RESUMEN

The sideroblastic anemias are a heterogeneous group of congenital and acquired hematological disorders whose morphological hallmark is the presence of ringed sideroblasts--bone marrow erythroid precursors containing pathologic iron deposits within mitochondria. Here, by positional cloning, we define a previously unknown form of autosomal recessive nonsyndromic congenital sideroblastic anemia, associated with mutations in the gene encoding the erythroid specific mitochondrial carrier family protein SLC25A38, and demonstrate that SLC25A38 is important for the biosynthesis of heme in eukaryotes.


Asunto(s)
Anemia Sideroblástica/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Mutación , Animales , Portador Sano , Familia , Peces/genética , Hemo/biosíntesis , Humanos , Fenotipo , Levaduras/genética
16.
Dev Neurobiol ; 68(1): 45-61, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17918238

RESUMEN

The zebrafish ennui mutation was identified from a mutagenesis screen for defects in early behavior. Homozygous ennui embryos swam more slowly than wild-type siblings but normal swimming recovered during larval stages and homozygous mutants survived until adulthood. Electrophysiological recordings from motoneurons and muscles suggested that the motor output of the CNS following mechanosensory stimulation was normal in ennui, but the synaptic currents at the neuromuscular junction were significantly reduced. Analysis of acetylcholine receptors (AChRs) in ennui muscles showed a marked reduction in the size of synaptic clusters and their aberrant localization at the myotome segment borders of fast twitch muscle. Prepatterned, nerve-independent AChR clusters appeared normal in mutant embryos and dispersed upon outgrowth of motor axons onto the muscles. Genetic mosaic analysis showed that ennui is required cell autonomously in muscle fibers for normal synaptic localization of AChRs. Furthermore, exogenous agrin failed to induce AChR aggregation, suggesting that ennui is crucial for agrin function. Finally, motor axons branched more extensively in ennui fast twitch muscles especially in the region of the myotome borders. These results suggest that ennui is important for nerve-dependent AChR clustering and the stability of axon growth.


Asunto(s)
Axones/fisiología , Neuronas Motoras/patología , Trastornos del Movimiento , Mutación/fisiología , Receptores Colinérgicos/metabolismo , Proteínas de Pez Cebra/genética , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Agrina/farmacología , Animales , Axones/efectos de los fármacos , Conducta Animal , Embrión no Mamífero , Neuronas Motoras/efectos de los fármacos , Trastornos del Movimiento/genética , Trastornos del Movimiento/patología , Trastornos del Movimiento/fisiopatología , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/fisiopatología , Transporte de Proteínas/efectos de los fármacos , Natación , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Pez Cebra , Proteínas de Pez Cebra/metabolismo
17.
Development ; 134(15): 2771-81, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17596281

RESUMEN

Wild-type zebrafish embryos swim away in response to tactile stimulation. By contrast, relatively relaxed mutants swim slowly due to weak contractions of trunk muscles. Electrophysiological recordings from muscle showed that output from the CNS was normal in mutants, suggesting a defect in the muscle. Calcium imaging revealed that Ca(2+) transients were reduced in mutant fast muscle. Immunostaining demonstrated that ryanodine and dihydropyridine receptors, which are responsible for Ca(2+) release following membrane depolarization, were severely reduced at transverse-tubule/sarcoplasmic reticulum junctions in mutant fast muscle. Thus, slow swimming is caused by weak muscle contractions due to impaired excitation-contraction coupling. Indeed, most of the ryanodine receptor 1b (ryr1b) mRNA in mutants carried a nonsense mutation that was generated by aberrant splicing due to a DNA insertion in an intron of the ryr1b gene, leading to a hypomorphic condition in relatively relaxed mutants. RYR1 mutations in humans lead to a congenital myopathy, multi-minicore disease (MmD), which is defined by amorphous cores in muscle. Electron micrographs showed minicore structures in mutant fast muscles. Furthermore, following the introduction of antisense morpholino oligonucleotides that restored the normal splicing of ryr1b, swimming was recovered in mutants. These findings suggest that zebrafish relatively relaxed mutants may be useful for understanding the development and physiology of MmD.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Canal Liberador de Calcio Receptor de Rianodina/genética , Natación , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Señalización del Calcio/fisiología , Sistema Nervioso Central/fisiología , Embrión no Mamífero , Modelos Biológicos , Datos de Secuencia Molecular , Contracción Muscular/genética , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Rápida/fisiología , Enfermedades Musculares/congénito , Enfermedades Musculares/fisiopatología , Isoformas de Proteínas/genética , Sitios de Empalme de ARN/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Pez Cebra/embriología
18.
Cell Calcium ; 39(3): 227-36, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16368137

RESUMEN

Contractions by skeletal muscle require proper excitation-contraction (EC) coupling, whereby depolarization of the muscle membrane leads to an increase in cytosolic Ca(2+) and contraction. Changes in membrane voltage are detected by dihydropyridine receptors (DHPR) that directly interact with and activate ryanodine receptors to release Ca(2+) from the sarcoplasmic reticulum into the cytosol. A genetic screen for motility mutations isolated a new allele of the immotile zebrafish mutant relaxed. Muscles in relaxed embryos do not contract in response to potassium chloride (KCl) thus appear unresponsive to membrane depolarization, but do contract when stimulated by caffeine, an agonist of ryanodine receptors. This suggests that relaxed mutant muscles are defective in EC coupling. Indeed, immunohistochemical analysis demonstrated that mutants lack DHPRs in skeletal muscles. The mutant phenotype results from non-sense mutations in the zebrafish CACNB1 gene that encodes the DHPR beta1 subunit. The zebrafish CACNB1 gene is expressed in skeletal muscles, PNS and CNS. Electrophysiological recordings showed no obvious abnormalities in the motor output of relaxed mutants, presumably due to redundancy provided by other beta subunits. The structural and functional homology of CACNB1 in zebrafish and mammals, suggests that zebrafish can be useful for studying EC coupling and potential neuronal function of CACNB1.


Asunto(s)
Canales de Calcio Tipo L/genética , Codón sin Sentido , Canal Liberador de Calcio Receptor de Rianodina/genética , Proteínas de Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Datos de Secuencia Molecular , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Sistema Nervioso/metabolismo , Parálisis/genética , Alineación de Secuencia , Pez Cebra/genética
19.
Zebrafish ; 3(2): 173-90, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-18248259

RESUMEN

General mechanisms of motor network development have often been examined in the spinal cord because of its relative simplicity when compared to higher parts of the brain. Indeed, most of our current understanding of motor pattern generation comes from work in the lower vertebrate spinal cord. Nevertheless, very little is known about the initial stages of motor network formation and the interplay between genes and electrical activity. Recent research has led to the establishment of the zebrafish as a key model system to study the genetics of neural development. The spinal cord of zebrafish is amenable to optical and electrophysiological analysis of neuronal activity even at the earliest embryonic stages when the network is immature. The combination of physiology and genetics in the same animal model should lead to insights into the basic mechanisms of motor circuit formation. This paper reviews recent work on the development of zebrafish motor activity and discusses them in the context of the current knowledge of embryonic and larval zebrafish spinal cord morphology and physiology.

20.
J Neurosci ; 25(28): 6610-20, 2005 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-16014722

RESUMEN

shocked (sho) is a zebrafish mutation that causes motor deficits attributable to CNS defects during the first2dof development. Mutant embryos display reduced spontaneous coiling of the trunk, diminished escape responses when touched, and an absence of swimming. A missense mutation in the slc6a9 gene that encodes a glycine transporter (GlyT1) was identified as the cause of the sho phenotype. Antisense knock-down of GlyT1 in wild-type embryos phenocopies sho, and injection of wild-type GlyT1 mRNA into mutants rescues them. A comparison of glycine-evoked inward currents in Xenopus oocytes expressing either the wild-type or mutant protein found that the missense mutation results in a nonfunctional transporter. glyt1 and the related glyt2 mRNAs are expressed in the hindbrain and spinal cord in nonoverlapping patterns. The fact that these regions are known to be required for generation of early locomotory behaviors suggests that the regulation of extracellular glycine levels in the CNS is important for proper function of neural networks. Furthermore, physiological analysis after manipulation of glycinergic activity in wild-type and sho embryos suggests that the mutant phenotype is attributable to elevated extracellular glycine within the CNS.


Asunto(s)
Sistema Nervioso Central/embriología , Proteínas de Transporte de Glicina en la Membrana Plasmática/fisiología , Glicina/metabolismo , Proteínas del Tejido Nervioso/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/genética , Animales , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/patología , Embrión no Mamífero/fisiopatología , Líquido Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Proteínas de Transporte de Glicina en la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Glicina en la Membrana Plasmática/deficiencia , Proteínas de Transporte de Glicina en la Membrana Plasmática/genética , Músculos/embriología , Músculos/fisiología , Mutación Missense , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Oocitos , Fenotipo , Estimulación Física , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Mensajero/farmacología , Proteínas Recombinantes de Fusión/metabolismo , Rombencéfalo/embriología , Rombencéfalo/metabolismo , Sarcosina/análogos & derivados , Sarcosina/farmacología , Médula Espinal/embriología , Médula Espinal/metabolismo , Natación , Xenopus , Pez Cebra/embriología , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA