Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 11844, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783044

RESUMEN

The dispersion of a passive colloid immersed in a bath of non-interacting and non-Brownian run-and-tumble microswimmers in two dimensions is analyzed using stochastic simulations and an asymptotic theory, both based on a minimal model of swimmer-colloid collisions characterized solely by frictionless steric interactions. We estimate the effective long-time diffusivity D of the suspended colloid resulting from its interaction with the active bath, and elucidate its dependence on the level of activity (persistence length of swimmer trajectories), the mobility ratio of the colloid to a swimmer, and the number density of swimmers in the bath. We also propose a semi-analytical model for the colloid diffusivity in terms of the variance and correlation time of the net fluctuating active force on the colloid resulting from swimmer collisions. Quantitative agreement is found between numerical simulations and analytical results in the experimentally-relevant regime of low swimmer density, low mobility ratio, and high activity.

2.
Soft Matter ; 19(35): 6825-6837, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37655464

RESUMEN

A suspension of dielectric particles rotating spontaneously when subjected to a DC electric field in two dimensions next to a no-slip electrode has proven to be an ideal model for active matter [Bricard et al., Nature, 2013, 503, 95-98]. In this system, an electrohydrodynamic (EHD) instability called Quincke rotation was exploited to create self-propelling particles which aligned with each other due to EHD interactions, giving rise to collective motion on large length scales. It is natural to question whether a suspension of such particles in three dimensions will also display collective motion and spontaneously flow like bacterial suspensions do. Using molecular dynamics type simulations, we show that dielectrophoretic forces responsible for chaining in the direction of the applied electric field in conventional electrorheological fluids and the counter-rotation of neighboring particles in these chains prevent collective motion in suspensions undergoing spontaneous particle rotations. Our simulations discover that the fundamental microstructural unit of a suspension under Quincke rotation is a pair of counter-rotating spheres aligned in the direction of the electric field. We perform a linear stability analysis that explains this observation.

3.
J Fluid Mech ; 9552023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36936351

RESUMEN

The fluid-structure interactions between flexible fibers and viscous flows play an essential role in various biological phenomena, medical problems, and industrial processes. Of particular interest is the case of particles freely transported in time-dependent flows. This work elucidates the dynamics and morphologies of actin filaments under oscillatory shear flows by combining microfluidic experiments, numerical simulations, and theoretical modeling. Our work reveals that, in contrast to steady shear flows, in which small orientational fluctuations from a flow-aligned state initiate tumbling and deformations, the periodic flow reversal allows the filament to explore many different configurations at the beginning of each cycle. Investigation of filament motion during half time periods of oscillation highlights the critical role of the initial filament orientation on the emergent dynamics. This strong coupling between orientation and deformation results in new deformation regimes and novel higher-order buckling modes absent in steady shear flows. The primary outcome of our analysis is the possibility of suppression of buckling instabilities for certain combinations of the oscillation frequency and initial filament orientation, even in very strong flows. We explain this unusual behavior through a weakly nonlinear Landau theory of buckling, in which we treat the filaments as inextensible Brownian Euler-Bernoulli rods whose hydrodynamics are described by local slender-body theory.

4.
Phys Rev E ; 108(6-1): 064608, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38243487

RESUMEN

Understanding the transport properties of microorganisms and self-propelled particles in porous media has important implications for human health as well as microbial ecology. In free space, most microswimmers perform diffusive random walks as a result of the interplay of self-propulsion and orientation decorrelation mechanisms such as run-and-tumble dynamics or rotational diffusion. In an unstructured porous medium, collisions with the microstructure result in a decrease in the effective spatial diffusivity of the particles from its free-space value. Here, we analyze this problem for a simple model system consisting of noninteracting point particles performing run-and-tumble dynamics through a two-dimensional disordered medium composed of a random distribution of circular obstacles, in the absence of Brownian diffusion or hydrodynamic interactions. The particles are assumed to collide with the obstacles as hard spheres and subsequently slide on the obstacle surface with no frictional resistance while maintaining their orientation, until they either escape or tumble. We show that the variations in the long-time diffusivity can be described by a universal dimensionless hindrance function f(ϕ,Pe) of the obstacle area fraction ϕ and Péclet number Pe, or ratio of the swimmer run length to the obstacle size. We analytically derive an asymptotic expression for the hindrance function valid for dilute media (Peϕ≪1), and its extension to denser media is obtained using stochastic simulations. As we explain, the model is also easily generalized to describe dispersion in three dimensions.

5.
Phys Rev E ; 105(1-1): 014608, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35193223

RESUMEN

We analyze the conformational dynamics and statistical properties of an active polymer model. The polymer is described as a freely jointed bead-rod chain subject to stochastic active force dipoles that act on the suspending solvent where they drive long-ranged fluid flows. Using Langevin simulations of isolated chains in unconfined domains, we show how the coupling of active flows with polymer conformations leads to emergent dynamics. Systems with contractile dipoles behave similarly to passive Brownian chains with enhanced fluctuations due to dipolar flows. In systems with extensile dipoles, however, our simulations uncover an active coil-stretch transition whereby the polymer spontaneously unfolds and stretches out in its own self-induced hydrodynamic flow, and we characterize this transition in terms of a dimensionless activity parameter comparing active dipolar forces to thermal fluctuations. We discuss our findings in the context of the classic coil-stretch transition of passive polymers in extensional flows and complement our simulations with a simple kinetic model for an active trimer.

6.
Soft Matter ; 17(36): 8373-8386, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34550131

RESUMEN

Membrane bending is an extensively studied problem from both modeling and experimental perspectives because of the wide implications of curvature generation in cell biology. Many of the curvature generating aspects in membranes can be attributed to interactions between proteins and membranes. These interactions include protein diffusion and formation of aggregates due to protein-protein interactions in the plane of the membrane. Recently, we developed a model that couples the in-plane flow of lipids and diffusion of proteins with the out-of-plane bending of the membrane. Building on this work, here, we focus on the role of explicit aggregation of proteins on the surface of the membrane in the presence of membrane bending and diffusion. We develop a comprehensive framework that includes lipid flow, membrane bending, the entropy of protein distribution, along with an explicit aggregation potential and derive the governing equations for the coupled system. We compare this framework to the Cahn-Hillard formalism to predict the regimes in which the proteins form patterns on the membrane. We demonstrate the utility of this model using numerical simulations to predict how aggregation and diffusion, when coupled with curvature generation, can alter the landscape of membrane-protein interactions.


Asunto(s)
Membrana Dobles de Lípidos , Proteínas , Membrana Celular , Difusión , Retroalimentación
7.
Phys Rev E ; 103(4): L040601, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34006000

RESUMEN

We predict the emergence of large-scale polar order and spontaneous directional flows in a class of self-propelled autonomous particles that interact via passive repulsion between off-center sites. The coupling of active motion with the passive torque acting about the particle centers results in hybrid active-passive interactions responsible for a macroscopic phase transition from an isotropic state to a polar-aligned state in systems of particles with front interaction sites. We employ a continuum kinetic theory to explain that the emergence of long-ranged orientational order, which occurs in unbounded domains at finite densities, can be externally activated independently of the self-propulsion mechanism and drives a macroscopic particle flow in a direction selected by symmetry breaking.

8.
Soft Matter ; 17(11): 3113-3120, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33599237

RESUMEN

The emergence of orientational order plays a central role in active matter theory and is deeply based in the study of active systems with a velocity alignment mechanism, whose most prominent example is the so-called Vicsek model. Such active systems have been used to describe bird flocks, bacterial swarms, and active colloidal systems, among many other examples. Under the assumption that the large-scale properties of these models remain unchanged as long as the polar symmetry of the interactions is not affected, implementations have been performed using, out of convenience, either additive or non-additive interactions; the latter are found for instance in the original formulation of the Vicsek model. Here, we perform a careful analysis of active systems with velocity alignment, comparing additive and non-additive interactions, and show that the macroscopic properties of these active systems are fundamentally different. Our results call into question our current understanding of the onset of order in active systems.

9.
Proc Natl Acad Sci U S A ; 117(36): 21841-21843, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32788351
10.
Soft Matter ; 16(23): 5534-5544, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32507870

RESUMEN

The transport of deformable particles through porous media underlies a wealth of applications ranging from filtration to oil recovery to the transport and spreading of biological agents. Using direct numerical simulations, we analyze the dynamics of semiflexible polymers under the influence of an imposed flow in a structured two-dimensional lattice serving as an idealization of a porous medium. This problem has received much attention in the limit of reptation and for long-chain polymer molecules such as DNA that are transported through micropost arrays for electrophoretic chromatographic separation. In contrast to long entropic molecules, the dynamics of elastic polymers results from a combination of scattering with the obstacles and flow-induced buckling instabilities. We identify three dominant modes of transport that involve trapping, gliding and vaulting of the polymers around the obstacles, and we reveal their essential features using tools from dynamical systems theory. The interplay of these scattering dynamics with transport and deformations in the imposed flow results in the long-time asymptotic dispersion of the center of mass, which we quantify in terms of a hydrodynamic dispersion tensor. We then discuss a simple yet efficient chromatographic device that exploits the competition between different modes of transport to sort filaments in a dilute suspension according to their lengths.

11.
Phys Rev Lett ; 123(20): 208101, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31809101

RESUMEN

Using a geometric feedback model of the flagellar axoneme accounting for dynein motor kinetics, we study elastohydrodynamic phase synchronization in a pair of spontaneously beating filaments with waveforms ranging from sperm to cilia and Chlamydomonas. Our computations reveal that both in-phase and antiphase synchrony can emerge for asymmetric beats while symmetric waveforms go in phase, and elucidate the mechanism for phase slips due to biochemical noise. Model predictions agree with recent experiments and illuminate the crucial roles of hydrodynamics and mechanochemical feedback in synchronization.


Asunto(s)
Flagelos/fisiología , Modelos Biológicos , Fenómenos Biomecánicos , Chlamydomonas/fisiología , Cilios/fisiología , Dineínas/fisiología , Humanos , Hidrodinámica , Masculino , Espermatozoides/fisiología
12.
Proc Natl Acad Sci U S A ; 115(45): 11442-11447, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30348795

RESUMEN

The 3D spatiotemporal organization of the human genome inside the cell nucleus remains a major open question in cellular biology. In the time between two cell divisions, chromatin-the functional form of DNA in cells-fills the nucleus in its uncondensed polymeric form. Recent in vivo imaging experiments reveal that the chromatin moves coherently, having displacements with long-ranged correlations on the scale of micrometers and lasting for seconds. To elucidate the mechanism(s) behind these motions, we develop a coarse-grained active polymer model where chromatin is represented as a confined flexible chain acted upon by molecular motors that drive fluid flows by exerting dipolar forces on the system. Numerical simulations of this model account for steric and hydrodynamic interactions as well as internal chain mechanics. These demonstrate that coherent motions emerge in systems involving extensile dipoles and are accompanied by large-scale chain reconfigurations and nematic ordering. Comparisons with experiments show good qualitative agreement and support the hypothesis that self-organizing long-ranged hydrodynamic couplings between chromatin-associated active motor proteins are responsible for the observed coherent dynamics.


Asunto(s)
Cromatina/metabolismo , Interfase , Modelos Moleculares , Proteínas Motoras Moleculares/metabolismo , Adenosina Trifosfato/metabolismo , Cromatina/ultraestructura , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Cristales Líquidos , Proteínas Motoras Moleculares/genética
13.
Proc Natl Acad Sci U S A ; 115(38): 9438-9443, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30181295

RESUMEN

The morphological dynamics, instabilities, and transitions of elastic filaments in viscous flows underlie a wealth of biophysical processes from flagellar propulsion to intracellular streaming and are also key to deciphering the rheological behavior of many complex fluids and soft materials. Here, we combine experiments and computational modeling to elucidate the dynamical regimes and morphological transitions of elastic Brownian filaments in a simple shear flow. Actin filaments are used as an experimental model system and their conformations are investigated through fluorescence microscopy in microfluidic channels. Simulations matching the experimental conditions are also performed using inextensible Euler-Bernoulli beam theory and nonlocal slender-body hydrodynamics in the presence of thermal fluctuations and agree quantitatively with observations. We demonstrate that filament dynamics in this system are primarily governed by a dimensionless elasto-viscous number comparing viscous drag forces to elastic bending forces, with thermal fluctuations playing only a secondary role. While short and rigid filaments perform quasi-periodic tumbling motions, a buckling instability arises above a critical flow strength. A second transition to strongly deformed shapes occurs at a yet larger value of the elasto-viscous number and is characterized by the appearance of localized high-curvature bends that propagate along the filaments in apparent "snaking" motions. A theoretical model for the as yet unexplored onset of snaking accurately predicts the transition and explains the observed dynamics. We present a complete characterization of filament morphologies and transitions as a function of elasto-viscous number and scaled persistence length and demonstrate excellent agreement between theory, experiments, and simulations.


Asunto(s)
Citoesqueleto de Actina/química , Fenómenos Biofísicos , Simulación por Computador , Reología , Citoesqueleto de Actina/metabolismo , Algoritmos , Elasticidad , Hidrodinámica , Microscopía Fluorescente , Modelos Teóricos , Conformación Molecular , Termodinámica , Viscosidad
14.
Soft Matter ; 13(2): 363-375, 2017 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-27906393

RESUMEN

Recent experimental studies have shown that confinement can profoundly affect self-organization in semi-dilute active suspensions, leading to striking features such as the formation of steady and spontaneous vortices in circular domains and the emergence of unidirectional pumping motions in periodic racetrack geometries. Motivated by these findings, we analyze the two-dimensional dynamics in confined suspensions of active self-propelled swimmers using a mean-field kinetic theory where conservation equations for the particle configurations are coupled to the forced Navier-Stokes equations for the self-generated fluid flow. In circular domains, a systematic exploration of the parameter space casts light on three distinct states: equilibrium with no flow, stable vortex, and chaotic motion, and the transitions between these are explained and predicted quantitatively using a linearized theory. In periodic racetracks, similar transitions from equilibrium to net pumping to traveling waves to chaos are observed in agreement with experimental observations and are also explained theoretically. Our results underscore the subtle effects of geometry on the morphology and dynamics of emerging patterns in active suspensions and pave the way for the control of active collective motion in microfluidic devices.

15.
Biomicrofluidics ; 10(4): 043505, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27375827

RESUMEN

We analyze the effective rheology of a dilute suspension of self-propelled slender particles confined between two infinite parallel plates and subject to a pressure-driven flow. We use a continuum kinetic model to describe the configuration of the particles in the system, in which the disturbance flows induced by the swimmers are taken into account, and use it to calculate estimates of the suspension viscosity for a range of channel widths and flow strengths typical of microfluidic experiments. Our results are in agreement with previous bulk models, and in particular, demonstrate that the effect of activity is strongest at low flow rates, where pushers tend to decrease the suspension viscosity whereas pullers enhance it. In stronger flows, dissipative stresses overcome the effects of activity leading to increased viscosities followed by shear-thinning. The effects of confinement and number density are also analyzed, and our results confirm the apparent transition to superfluidity reported in recent experiments on pusher suspensions at intermediate densities. We also derive an approximate analytical expression for the effective viscosity in the limit of weak flows and wide channels, and demonstrate good agreement between theory and numerical calculations.

16.
Artículo en Inglés | MEDLINE | ID: mdl-26565158

RESUMEN

An analytical expression for the fluctuation-rounded stretch-coil transition of semiflexible polymers in extensional flows is derived. The competition between elasticity and tension is known to cause a buckling instability in filaments placed near hyperbolic stagnation points and the effect of thermal fluctuations on this transition has yet to receive full quantitative treatment. Motivated by the findings of recent experiments as well as our simulations, we solve for the amplitude of the first buckled mode near the onset of the instability. This reveals a stochastic supercritical bifurcation, which is in excellent agreement with full numerical simulations.

17.
Sci Rep ; 5: 13226, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26285032

RESUMEN

Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors.

18.
Nat Commun ; 6: 7470, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-26088835

RESUMEN

Coherent vortical motion has been reported in a wide variety of populations including living organisms (bacteria, fishes, human crowds) and synthetic active matter (shaken grains, mixtures of biopolymers), yet a unified description of the formation and structure of this pattern remains lacking. Here we report the self-organization of motile colloids into a macroscopic steadily rotating vortex. Combining physical experiments and numerical simulations, we elucidate this collective behaviour. We demonstrate that the emergent-vortex structure lives on the verge of a phase separation, and single out the very constituents responsible for this state of polar active matter. Building on this observation, we establish a continuum theory and lay out a strong foundation for the description of vortical collective motion in a broad class of motile populations constrained by geometrical boundaries.

19.
Nanoscale ; 7(17): 7833-40, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25853933

RESUMEN

Motion-based chemical sensing using microscale particles has attracted considerable recent attention. In this paper, we report on new experiments and Brownian dynamics simulations that cast light on the dynamics of both passive and active microrods (gold wires and gold-platinum micromotors) in a silver ion gradient. We demonstrate that such microrods can be used for threat detection in the form of a silver ion source, allowing for the determination of both the location of the source and concentration of silver. This threat detection strategy relies on the diffusiophoretic motion of both passive and active microrods in the ionic gradient and on the speed acceleration of the Au-Pt micromotors in the presence of silver ions. A Langevin model describing the microrod dynamics and accounting for all of these effects is presented, and key model parameters are extracted from the experimental data, thereby providing a reliable estimate for the full spatiotemporal distribution of the silver ions in the vicinity of the source.


Asunto(s)
Metales Pesados/química , Simulación de Dinámica Molecular , Nanoestructuras/química , Nanotecnología/métodos , Contaminantes Atmosféricos/análisis , Técnicas de Química Analítica , Monitoreo del Ambiente
20.
Artículo en Inglés | MEDLINE | ID: mdl-25353410

RESUMEN

Strongly confined active liquids are subject to unique hydrodynamic interactions due to momentum screening and lubricated friction by the confining walls. Using numerical simulations, we demonstrate that two-dimensional dilute suspensions of fore-aft asymmetric polar swimmers in a Hele-Shaw geometry can exhibit a rich variety of novel phase behaviors depending on particle shape, including coherent polarized density waves with global alignment, persistent counterrotating vortices, density shocks and rarefaction waves. We also explain these phenomena using a linear stability analysis and a nonlinear traffic flow model, both derived from a mean-field kinetic theory.


Asunto(s)
Coloides/química , Hidrodinámica , Modelos Químicos , Reología/métodos , Soluciones/química , Simulación por Computador , Fricción , Tamaño de la Partícula , Resistencia al Corte , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...