Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mov Ecol ; 12(1): 11, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38303081

RESUMEN

Understanding drivers of space use by African elephants is critical to their conservation and management, particularly given their large home-ranges, extensive resource requirements, ecological role as ecosystem engineers, involvement in human-elephant conflict and as a target species for ivory poaching. In this study we investigated resource selection by elephants inhabiting the Greater Mara Ecosystem in Southwestern Kenya in relation to three distinct but spatially contiguous management zones: (i) the government protected Maasai Mara National Reserve (ii) community-owned wildlife conservancies, and (iii) elephant range outside any formal wildlife protected area. We combined GPS tracking data from 49 elephants with spatial covariate information to compare elephant selection across these management zones using a hierarchical Bayesian framework, providing insight regarding how human activities structure elephant spatial behavior. We also contrasted differences in selection by zone across several data strata: sex, season and time-of-day. Our results showed that the strongest selection by elephants was for closed-canopy forest and the strongest avoidance was for open-cover, but that selection behavior varied significantly by management zone and selection for cover was accentuated in human-dominated areas. When contrasting selection parameters according to strata, variability in selection parameter values reduced along a protection gradient whereby elephants tended to behave more similarly (limited plasticity) in the human dominated, unprotected zone and more variably (greater plasticity) in the protected reserve. However, avoidance of slope was consistent across all zones. Differences in selection behavior was greatest between sexes, followed by time-of-day, then management zone and finally season (where seasonal selection showed the least differentiation of the contrasts assessed). By contrasting selection coefficients across strata, our analysis quantifies behavioural switching related to human presence and impact displayed by a cognitively advanced megaherbivore. Our study broadens the knowledge base about the movement ecology of African elephants and builds our capacity for both management and conservation.

2.
Sci Data ; 9(1): 8, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35042854

RESUMEN

The savannas of the Kenya-Tanzania borderland cover >100,000 km2 and is one of the most important regions globally for biodiversity conservation, particularly large mammals. The region also supports >1 million pastoralists and their livestock. In these systems, resources for both large mammals and pastoralists are highly variable in space and time and thus require connected landscapes. However, ongoing fragmentation of (semi-)natural vegetation by smallholder fencing and expansion of agriculture threatens this social-ecological system. Spatial data on fences and agricultural expansion are localized and dispersed among data owners and databases. Here, we synthesized data from several research groups and conservation NGOs and present the first release of the Landscape Dynamics (landDX) spatial-temporal database, covering ~30,000 km2 of southern Kenya. The data includes 31,000 livestock enclosures, nearly 40,000 kilometres of fencing, and 1,500 km2 of agricultural land. We provide caveats and interpretation of the different methodologies used. These data are useful to answer fundamental ecological questions, to quantify the rate of change of ecosystem function and wildlife populations, for conservation and livestock management, and for local and governmental spatial planning.


Asunto(s)
Animales Salvajes , Biodiversidad , Pradera , Agricultura , Animales , Conservación de los Recursos Naturales , Bases de Datos Factuales , Kenia , Ganado , Mamíferos , Análisis Espacio-Temporal , Tanzanía
3.
J Anim Ecol ; 91(1): 112-123, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34726278

RESUMEN

To conserve wide-ranging species in human-modified landscapes, it is essential to understand how animals selectively use or avoid cultivated areas. Use of agriculture leads to human-wildlife conflict, but evidence suggests that individuals may differ in their tendency to be involved in conflict. This is particularly relevant to wild elephant populations. We analysed GPS data of 66 free-ranging elephants in the Serengeti-Mara ecosystem to quantify their use of agriculture. We then examined factors influencing the level of agricultural use, individual change in use across years and differences in activity budgets associated with use. Using clustering methods, our data grouped into four agricultural use tactics: rare (<0.6% time in agriculture; 26% of population), sporadic (0.6%-3.8%; 34%), seasonal (3.9%-12.8%; 31%) and habitual (>12.8%; 9%). Sporadic and seasonal individuals represented two-thirds (67%) of recorded GPS fixes in agriculture, compared to 32% from habitual individuals. Increased agricultural use was associated with higher daily distance travelled and larger home range size, but not with age or sex. Individual tactic change was prevalent and the habitual tactic was maintained in consecutive years by only five elephants. Across tactics, individuals switched from diurnal to nocturnal activity during agricultural use, interpreted as representing similar risk perception of cultivated areas. Conversely, tactic choice appeared to be associated with differences in risk tolerance between individuals. Together, our results suggest that elephants are balancing the costs and benefits of crop usage at both fine (e.g. crop raid events) and long (e.g. yearly tactic change) temporal scales. The high proportion of sporadic and seasonal tactics also highlights the importance of mitigation strategies that address conflict arising from many animals, rather than targeted management of habitual crop raiders. Our approach can be applied to other species and systems to characterize individual variation in human resource use and inform mitigations for human-wildlife coexistence.


Asunto(s)
Elefantes , Agricultura , Animales , Animales Salvajes , Conservación de los Recursos Naturales/métodos , Ecosistema , Percepción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...