Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 4): 581-590, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32831277

RESUMEN

Here, the first accurate study is presented of the room-temperature and 100 K structures of one of the first organic spin liquids, κ-(BEDT-TTF)2Ag2(CN)3. It is shown that the monoclinic structure determined previously is only the average one. It is shown that the exact structure presents triclinic symmetry with two non-equivalent dimers in the unit cell. But surprisingly this does not lead to a sizeable charge disproportionation between dimers. The difference from the analogue compound κ-(BEDT-TTF)2Cu2(CN)3 which also presents a spin liquid phase is discussed in detail. The data provided here show the importance of the anionic layer and in particular the transition metal position in the process of symmetry breaking. The possible impact of the symmetry breaking, albeit weak, on the spin-liquid mechanism and the influence of various disorders on the physical properties of this system is also discussed.

2.
Inorg Chem ; 58(24): 16703-16711, 2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31773954

RESUMEN

Rational control of the molecular arrangement in solids has been the subject of intense research for many years. In particular, the structural control of bis(ethylenedithio)tetrathiafulvalene (ET) radical cations has attracted special interest because of the primary effect on the electronic properties of the salts. In this study, we obtained the first ET cation radical salts formed with nonuniform silver(I) complex polyanions, which involve multiple kinds of openings in the anionic layer, by an electrocrystallization method. θ-(ET)2Ag2(CN)[N(CN)2]2 (1) with a θ-type ET packing motif contains double helical chains composed of AgN(CN)2, whereas α″-(ET)2Ag2(CN)(SCN)2 (2) with an α″-type ET packing motif contains zigzag ladders composed of AgSCN. Both silver(I)-based tube-like assemblies are connected to each other by a cyano group, affording nonuniform polyanionic structures. Although both salts show semiconducting behavior, there is a distinct difference in their spin geometry, with an S = 1/2 Heisenberg antiferromagnetic square lattice in 1, which is associated with charge disproportionation or dynamical charge fluctuation in the ET layers, and an S = 1/2 Heisenberg anisotropic triangular lattice in 2, which results in spin frustration in the ET layers. The ability of the nonuniform polymeric structures in the anionic layers to act as templates for various arrangements of ET radical cations is demonstrated.

3.
Inorg Chem ; 58(20): 14068-14074, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31599584

RESUMEN

Coronene is the smallest homologue of benzene and is the smallest fragment of graphene among 6-fold symmetric polycyclic aromatic hydrocarbons. In this study, we obtained the first coronene cation radical solid containing magnetic counterions by an electrochemical method. Coronene monocations in the 1:1 salt, (coronene•+)(FeBr4-), assemble in a stacking manner via π-π interactions, which lead to a rather high room-temperature conductivity of 0.6 S cm-1. The salt shows semiconducting behavior as expected from the calculated band structure, and activation energies were estimated to be 0.25 eV at T ≥ 220 K and 0.18 eV at T ≤ 220 K. The magnetic susceptibility follows the Curie-Weiss law down to about 30 K, with a Curie constant (4.47 emu K mol-1) expected for S = 5/2 spins of iron(III) ions and a high Weiss temperature (-32.2 K). Upon further cooling, the salt exhibits a susceptibility kink at 16.2 K followed by the loss of a significant fraction of the susceptibility due to long-range antiferromagnetic ordering. Theoretical calculations predicted that the indirect π-d magnetic exchange interaction through C-H···Br hydrogen bonds is equal to Jπd = -3.10 K. Although the absolute value is lower than that of the direct d-d magnetic exchange interaction between the FeBr4- anions (Jdd = -13.35 K), it is evident that the π-d interactions play a certain role in determining the magnetic behavior. Considering that an isomorphous salt, (coronene•+)(GaBr4-) involving a nonmagnetic counterpart GaBr4-, exhibits singlet-triplet magnetic behavior with a spin gap of 1.44 × 103 K, it is most likely that in (coronene)(FeBr4) the nonmagnetic π-electrons serve as mediators of the magnetic ordering of d-spins through the π-d interactions.

4.
Inorg Chem ; 58(8): 4820-4827, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30932495

RESUMEN

Three mixed crystals, κ-(ET)2Ag2 xCu2(1- x)(CN)3 [ET is bis(ethylenedithio)tetrathiafulvalene; 0.24 < x < 0.71] with a κ-type packing motif of face-to-face ET dimers, were obtained by electrocrystallization. Regardless of the composition, each ET dimer fits into a hexagonal anionic opening (i.e., key-on-hole packing) similar to its parent spin liquid candidate, κ-(ET)2Cu2(CN)3. X-ray diffraction and energy dispersive spectroscopy analyses revealed that Cu and Ag atoms are statistically disordered with a fairly homogeneous distribution in a crystal. A structural variation depending on x is responsible for the change in the calculated band parameters related to intermolecular interactions, electron correlations, and frustrations. A salt with nearly equimolar amounts of Ag and Cu ( x = 0.49) is semiconductive at ambient pressure and undergoes a Mott transition upon application of hydrostatic pressure. Along with the positive pressure dependence of the transition temperature, the temperature-independent amplitude of magnetic torque at low temperatures suggests that the insulating phase is a quantum spin liquid. Further application of pressure results in the appearance of a superconducting phase. Contrary to those of the parent salts, κ-(ET)2Cu2(CN)3 and κ-(ET)2Ag2(CN)3, the transition temperature increases as the pressure increases and eventually reaches 4.5 K at 1.65 GPa.

5.
Phys Chem Chem Phys ; 21(4): 1645-1649, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30624457

RESUMEN

Salts of fullerene C60˙- and endometallofullerene Sc3N@Ih-C80˙- radical anions with Bu3MeP+ cations ((Bu3MeP+)3(C60˙-)3·C6H4Cl2 (1) and (Bu3MeP+)3(Sc3N@Ih-C80˙-)3·C6H4Cl2 (2)) have been obtained. The C3 symmetry of the Bu3MeP+ cation provides 2D Kagome lattices with an equilateral triangle arrangement of fullerenes in accordance with trigonal crystal symmetry P31m. The C60˙- and Sc3N@Ih-C80˙- radical anions preserve their monomeric forms in 1 and 2 with the S = 1/2 spin state down to 1.9 K. The close packing of the fullerene radical anions results in strong antiferromagnetic coupling of the spins with Weiss temperatures of -108 K for 1 and -43 K for 2. Compound 1 is a rare example of a magnetic system in which in spite of the strong magnetic coupling of spins no long-range ordering is observed down to 1.9 K. The 13C NMR spectra of the 13C enriched sample of 1 support the absence of the antiferromagnetic ordering of spins down to 1.5 K. Thus, the crystals of 1 preserve large spin frustration forced by the trigonal symmetry. Therefore, compound 1 is a promising candidate for the first observation of a quantum spin liquid (QSL) state in a fullerene-based system. Isostructural salt 2 is the first compound that contains monomeric paramagnetic Sc3N@Ih-C80˙- radical anions stable down to 1.9 K, which show strong spin frustration. These data indicate the ability of endometallofullerenes to give exotic magnetic systems such as QSLs.

6.
J Phys Chem Lett ; 8(8): 1702-1706, 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28368116

RESUMEN

A facile synthetic method for doped conjugated molecules by a heating process is demonstrated. Br-terminated terthiophene precursors are encapsulated in single-walled carbon nanotubes by a vapor-phase reaction, and additional heat treatment promotes the thermal condensation of the precursors. Transmission electron microscopy observations and optical measurements show the successful synthesis of sexithiophenes and their doping (oxidation) by Br dopants generated by the condensation reaction. This study provides a new strategy for the synthesis of the doped conjugated polymers from single-species molecules by only a heating process.

7.
Dalton Trans ; 46(11): 3492-3499, 2017 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-28224152

RESUMEN

Charge transfer complexes (Cp*2Co+)(H2Pc˙-)·0.5C6H4Cl2·0.7C6H5CN·0.3C6H14 (1) and (Cp*2Cr+)(H2Pc˙-)·4C6H4Cl2 (2) have been obtained as single crystals. Both complexes contain metal-free phthalocyanine (Pc) radical anions and decamethylmetallocenium cations. Reduction of the Pc macrocycle leads to the appearance of new bands at 1026-1030 nm in the NIR range and blue shifts of both Soret and Q-bands of H2Pc in the spectra of 1 and 2. The geometry of the Pc macrocycles supports the formation of H2Pc˙- by the alternation of shorter and longer C-N(imine) bonds in the macrocycles in 2. Complex 1 contains pairs of H2Pc˙- having effective π-π interactions with two sandwiched Cp*2Co+ cations, whereas complex 2 contains stacks composed of alternating Cp*2Cr+ and H2Pc˙- ions. The magnetic moment of 1 is 1.64 µB at 300 K due to the contribution of the H2Pc˙- spins with the S = 1/2 state and diamagnetism of Cp*2Co+. This is supported by the observation of a narrow EPR signal of 1 with g = 2.0032-2.0036 characteristic of H2Pc˙-. Strong antiferromagnetic coupling of spins with a Weiss temperature of -23 K is observed between H2Pc˙- in 1. This coupling is probably mediated by the Cp*2Co+ cations. The magnetic moment of 2 is 4.18 µB at 300 K indicating the contribution of both paramagnetic H2Pc˙- (S = 1/2) and Cp*2Cr+ (S = 3/2) species. In spite of the presence of stacks of alternating ions in 2, only weak magnetic coupling is observed with a Weiss temperature of -4 K most probably due to ineffective π-π interactions between Cp*2Cr+ and H2Pc˙-. The EPR spectrum of 2 contains an asymmetric signal attributed to CrIII (g1 = 3.9059-3.9220) and a narrow Lorentzian signal from H2Pc˙- with g2 = 1.9943-1.9961. In addition to these signals, a broad EPR signal grows in intensity below 80 K with g4 = 2.1085-2.2438 which can be attributed to both paramagnetic Cp*2Cr+ and H2Pc˙- species having exchange interactions.

8.
Chem Asian J ; 12(8): 910-919, 2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28205420

RESUMEN

Reduction of aluminum(III), gallium(III), and indium(III) phthalocyanine chlorides by sodium fluorenone ketyl in the presence of tetrabutylammonium cations yielded crystalline salts of the type (Bu4 N+ )2 [MIII (HFl-O- )(Pc.3- )].- (Br- )⋅1.5 C6 H4 Cl2 [M=Al (1), Ga (2); HFl-O- =fluoren-9-olato- anion; Pc=phthalocyanine] and (Bu4 N+ ) [InIII Br(Pc.3- )].- ⋅0.875 C6 H4 Cl2 ⋅0.125 C6 H14 (3). The salts were found to contain Pc.3- radical anions with negatively charged phthalocyanine macrocycles, as evidenced by the presence of intense bands of Pc.3- in the near-IR region and a noticeable blueshift in both the Q and Soret bands of phthalocyanine. The metal(III) atoms coordinate HFl-O- anions in 1 and 2 with short Al-O and Ga-O bond lengths of 1.749(2) and 1.836(6) Å, respectively. The C-O bonds [1.402(3) and 1.391(11) Šin 1 and 2, respectively] in the HFl-O- anions are longer than the same bond in the fluorenone ketyl (1.27-1.31 Å). Salts 1-3 show effective magnetic moments of 1.72, 1.66, and 1.79 µB at 300 K, respectively, owing to the presence of unpaired S=1/2 spins on Pc.3- . These spins are coupled antiferromagnetically with Weiss temperatures of -22, -14, and -30 K for 1-3, respectively. Coupling can occur in the corrugated two-dimensional phthalocyanine layers of 1 and 2 with an exchange interaction of J/kB =-0.9 and -1.1 K, respectively, and in the π-stacking {[InIII Br(Pc.3- )].- }2 dimers of 3 with an exchange interaction of J/kB =-10.8 K. The salts show intense electron paramagnetic resonance (EPR) signals attributed to Pc.3- . It was found that increasing the size of the central metal atom strongly broadened these EPR signals.

9.
Inorg Chem ; 56(4): 1804-1813, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28165230

RESUMEN

Crystalline anionic salts with copper octafluoro- and hexadecafluorophthalocyanines, (Bu4N+)2[CuII(F8Pc)4-]2-·2C6H4Cl2 (1) and (PPN+)3[CuF16Pc]33-·2C6H5CN (2), where PPN+ is bis(triphenylphosphoranylidene)ammonium and Pc is phthalocyanine, have been obtained. The absence of noticeable absorption in the NIR range and DFT calculations for 1 indicate that both negative charges are mainly localized on the Pc ligand, and that the [CuII(F8Pc)4-]2- dianions are formed without reduction of CuII. The magnetic moment of 1.60 µB corresponds to the contribution of one S = 1/2 spin per dianion. The spin is localized on the CuII atom, which shows an EPR signal characteristic of CuII. Dianions are isolated in 1, providing only weak magnetic coupling of spins with a Weiss temperature of -4 K. Salt 2 contains closely packed π-π stacks built of [CuF16Pc]- anions of types I and II, and the interplanar distances are 3.187 and 3.275 Å. According to the DFT calculations, the [CuF16Pc]- anions of types I and II can have different charge distributions, with localization of an extra electron on the copper atoms to form diamagnetic [CuI(F16Pc)2-]- monoanions or delocalization of an extra electron on the F16Pc ligand to form [CuII(F16Pc)•3-]•- having an S = 1/2 (CuII) + 1/2 (F16Pc•3-) spin state. In fact, at 300 K, the magnetic moment of 2 of 3.25 µB per formula unit is rather close to the contribution from two [CuII(F16Pc)•3-]•- (calculated µeff is 3.46 µB). The Weiss temperature of -21.5 K indicates antiferromagnetic coupling of spins, which can be modeled by stronger intermolecular coupling between (F16Pc)•3- with J1/kB = -23.5 K and weaker intramolecular coupling between CuII and (F16Pc)•3- with J2/kB = -8.1 K. This interaction is realized in the {[CuII(F16Pc)•3-]•-}2 dimers separated by diamagnetic [CuI(F16Pc)2-]- species. In spite of the stacking arrangement of phthalocyanine macrocycles in 2, the inhomogeneous charge distribution and nonuniform distances between the macrocycles should suppress electrical conductivity.

10.
J Am Chem Soc ; 138(51): 16592-16595, 2016 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-27936666

RESUMEN

A spin crossover phenomena is observed in an anionic (Bu4N+){Co(Ph3P)}2(µ2-Cl-)(µ2-η2,η2-C60)2·2C6H14 (1) complex in which two cobalt atoms bridge two fullerene molecules to form a dimer. The dimer has a triplet ground state with two weakly coupling Co0 atoms (S = 1/2). The spin transition realized above 150 K is accompanied by a cobalt-to-fullerene charge transfer that forms a quintet excited state with a high spin CoI (S = 1) and C60•- (S = 1/2).

11.
Dalton Trans ; 45(43): 17095-17099, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27747350

RESUMEN

The interaction of decamethylchromocene (Cp*2Cr) with indigo in the presence of a Cl- source yields the coordination complex (indigo-O,O)(Cp*CrIICl) (1) in which one Cp* ligand at chromium is substituted by indigo. Indigo adopts an unusual cis-conformation in 1, allowing the coordination of both indigo carbonyl groups to one CrII center. Complex 1 contains CrII with an S = 1 spin state and indigo0. At the same time, calculations show that an excited ionic state is positioned close to the neutral ground state, providing the appearance of intense low-energy NIR bands in the spectrum of 1 at 820 and 1002 nm attributed to metal-to-ligand charge transfer.

12.
Phys Rev Lett ; 117(10): 107203, 2016 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-27636491

RESUMEN

The effects of pressure on a quantum spin liquid are investigated in an organic Mott insulator κ-(ET)_{2}Ag_{2}(CN)_{3} with a spin-1/2 triangular lattice. The application of negative chemical pressure to κ-(ET)_{2}Cu_{2}(CN)_{3}, which is a well-known sister Mott insulator, allows for extensive tuning of antiferromagnetic exchange coupling, with J/k_{B}=175-310 K, under hydrostatic pressure. Based on ^{13}C nuclear magnetic resonance measurements under pressure, we uncover universal scaling in the static and dynamic spin susceptibilities down to low temperatures ∼0.1k_{B}T/J. The persistent fluctuations and residual specific heat coefficient are consistent with the presence of gapless low-lying excitations. Our results thus demonstrate the fundamental finite-temperature properties of a quantum spin liquid in a wide parameter range.

13.
Chem Commun (Camb) ; 52(71): 10763-6, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27511304

RESUMEN

Reduction of scandium nitride clusterfullerene, Sc3N@Ih-C80, by sodium fluorenone ketyl in the presence of cryptand[2,2,2] allows the crystallization of the {cryptand[2,2,2](Na(+))}2(Sc3N@Ih-C80(-))2·2.5C6H4Cl2 (1) salt. The Sc3N@Ih-C80˙(-) radical anions are dimerized to form single-bonded (Sc3N@Ih-C80(-))2 dimers.

14.
J Phys Condens Matter ; 28(30): 304001, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27294380

RESUMEN

Recent developments in the arena of charge-transfer complexes composed of the D 6h-symmetric polycyclic aromatic hydrocarbon, coronene, are highlighted with emphasis on the structural and physical properties of these complexes. Because of the dual electron-donating and -accepting abilities of coronene, this group involves structurally-defined four cation salts and three anion salts. The Jahn-Teller distortions and in-plane motion of coronene molecules in the solids, both of which are closely associated with the high symmetry of coronene molecules, and syntheses of clathrate-type complexes are also presented.

15.
Dalton Trans ; 45(26): 10780-8, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27295607

RESUMEN

The interaction of Sn(IV)Cl2Pc with an excess of NaBPh4 in the presence of fullerenes C60 and C70 provides complete dissolution of Sn(IV)Cl2Pc and the formation of blue solutions from which the crystals of [SnPhPc(2-)](+)(BPh4)(-)·C6H14 () or [SnPhPc˙(3-)]·C6H4Cl2 () were selectively isolated. According to the optical spectra, salt contains dianionic Pc(2-) macrocycles, whereas macrocycles are reduced to form the Pc˙(3-) radical trianions in . As a result, the phthalocyanine macrocycle is dianionic in , and the positive charge of Sn(IV) is compensated by the Ph(-), Pc(2-), and BPh4(-) anions in this compound. The formally neutral compound contains two anionic species of Ph(-) and Pc˙(3-) and the Sn(IV) ion as the counter cation. Phenyl substituents are linked to the Sn(IV) atoms by the Sn-C(Ph) bonds of 2.098(2) () and 2.105(2) Å () length. The dianionic Pc(2-) macrocycle significantly deviates from planarity in while Pc˙(3-) is planar in . Salt manifests only a weak impurity EPR signal. Compound manifests an intense EPR signal with g = 2.0046 and a linewidth of 0.5 mT at 298 K due to the presence of Pc˙(3-). Spins are weakly antiferromagnetically coupled in the π-stacking [SnPhPc˙(3-)]2 dimers of with a Weiss temperature of -3 K and the estimated magnetic exchange interaction J/kB = -0.23 K.

16.
Chem Asian J ; 11(11): 1705-10, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27062654

RESUMEN

The reduction of fullerene C60 by zinc dust in the presence of crystal violet cations (CV(+) ) yielded a deep-blue solution, from which crystals of (CV(+) )(C60 (.-) )⋅0.5 C6 H4 Cl2 (1) were obtained by slow mixing with n-hexane. The salt contained isolated, closely packed zigzagged chains that were composed of C60 (.-) radical anions with a uniform interfullerene center-to-center distance of 9.98 Å. In spite of the close proximity of the fullerenes, they did not dimerize, owing to spatial separation by the phenyl substituents of CV(+) . The room-temperature conductivity of compound 1 was 3×10(-2)  S cm(-1) along the fullerene chains. The salt exhibited semiconducting behavior, with an activation energy of Ea =167 meV. Spins localized on C60 (.-) were antiferromagnetically coupled within the fullerene chains, with a Weiss temperature of -19 K without long-range magnetic ordering down to 1.9 K.

17.
Dalton Trans ; 45(15): 6548-54, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-26956368

RESUMEN

The reduction of Co(II)(dppe)Cl2 with sodium fluorenone ketyl produces a red solution containing the Co(I) species. The dissolution of C60 in the obtained solution followed by the precipitation of crystals with hexane yields a salt {Co(I)(dppe)2(+)}(C60˙(-))·2C6H4Cl2 and a novel complex {Co(dppe)2Cl}(C60) (). With C70, only the crystals of {Co(dppe)2Cl}(C70)·0.5C6H4Cl2 () are formed. Complex contains zig-zag fullerene chains whereas closely packed double chains are formed from fullerenes in . According to the optical spectra and magnetic data charge transfer occurs in both and with the formation of the Co(II)(dppe)2Cl(+) cations and the C60˙(-) or C70˙(-) radical anions. In spite of the close packing in crystals, C60˙(-) or C70˙(-) retain their monomeric form at least down to 100 K. The effective magnetic moments of and of 1.98 and 2.27µB at 300 K, respectively, do not attain the value of 2.45µB expected for the system with two non-interacting S = 1/2 spins at full charge transfer to fullerenes. Most probably diamagnetic {Co(I)(dppe)2Cl}(0) and neutral fullerenes are partially preserved in the samples which can explain the weak magnetic coupling of spins and the absence of fullerene dimerization in both complexes. The EPR spectra of and show asymmetric signals approximated by several lines with g-factors ranging from 2.0009 to 2.3325. These signals originate from the exchange interaction between the paramagnetic Co(II)(dppe)2Cl(+) cations and the fullerene˙(-) radical anions.

18.
Chemistry ; 22(17): 6023-30, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-26989854

RESUMEN

Coronene, which is the smallest D6h -symmetric polycyclic aromatic hydrocarbon, attracts particular attention as a basic component of electronic materials because it is the smallest fragment of graphene. However, carrier generation by physical methods, such as photo- or electric field-effect, has barely been studied, primarily because of the poor π-conduction pathway in pristine coronene solid. In this work we have developed unprecedented π-stacking columns of cationic coronene molecules by electrochemical hole-doping with polyoxometallate dianions. The face-to-face π-π interactions as well as the partially charged state lead to electrical conductivity at room temperature of up to 3 S cm(-1) , which is more than 10 orders of magnitude higher than that of pristine coronene solid. Additionally, the robust π-π interactions strongly suppress the in-plane rotation of the coronene molecules, which has allowed the first direct observation of the static Jahn-Teller distortion of cationic coronene molecules.

19.
Inorg Chem ; 55(4): 1390-402, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26836829

RESUMEN

The ability of tin atoms to form stable Sn-M bonds with transition metals was used to prepare transition metal complexes with tin(II) phthalocyanine in neutral, monoanionic, and dianionic states. These complexes were obtained via the interactions of [Sn(IV)Cl2Pc(3-)](•-) or [Sn(II)Pc(3-)](•-) radical anions with {Cp*Mo(CO)2}2, {CpFe(CO)2}2, {CpMo(CO)3}2, Fe3(CO)12, {Cp*RhCl2}2, or Ph5CpRu(CO)2Cl. The neutral coordination complexes of Cp*MoBr(CO)2[Sn(II)Pc(2-)]·0.5C6H4Cl2 (1) and CpFe(CO)2[Sn(II)Pc(2-)]·2C6H4Cl2 (2) were obtained from [Sn(IV)Cl2Pc(3-)](•-). On the other hand, the coordination of transition metals to [Sn(II)Pc(3-)](•-) yielded anionic coordination complexes preserving the spin on [Sn(II)Pc(3-)](•-). However, in the case of {cryptand[2,2,2](Na(+))}{CpFe(II)(CO)2[Sn(II)Pc(4-)]}(-)·C6H4Cl2 (4), charge transfer from CpFe(I)(CO)2 to [Sn(II)Pc(3-)](•-) took place to form the diamagnetic [Sn(II)Pc(4-)](2-) dianion and {CpFe(II)(CO)2}(+). The complexes {cryptand[2,2,2](Na(+))}{Fe(CO)4[Sn(II)Pc(3-)](•-)} (5), {cryptand[2,2,2](Na(+))}{CpMo(CO)2[Sn(II)Pc(2-)Sn(II)Pc(3-)(•-)]} (6), and {cryptand[2,2,2](Na(+))}{Cp*RhCl2[Sn(II)Pc(3-)](•-)} (7) have magnetic moments of 1.75, 2.41, and 1.75 µ(B), respectively, owing to the presence of S = 1/2 spins on [Sn(II)Pc(3-)](•-) and CpMo(I)(CO)2 (for 6). In addition, the strong antiferromagnetic coupling of spins with Weiss temperatures of -35.5 -28.6 K was realized between the CpMo(I)(CO)2 and the [Sn(II)Pc(3-)](•-) units in 6 and the π-stacking {Fe(CO)4[Sn(II)Pc(3-)](•-)}2 dimers of 5, respectively. The [Sn(II)Pc(3-)](•-) radical anions substituted the chloride anions in Ph5CpRu(CO)2Cl to form the formally neutral compound {Ph5CpRu(II)(CO)2[Sn(II)Pc(3-)]} (8) in which the negative charge and spin are preserved on [Sn(II)Pc(3-)](•-). The strong antiferromagnetic coupling of spins with a magnetic exchange interaction J/k(B) = -183 K in 8 is explained by the close packing of [Sn(II)Pc(3-)](•-) in the π-stacked {Ph5CpRu(II)(CO)2[Sn(II)Pc(3-)](•-)}2 dimers.

20.
Inorg Chem ; 54(10): 4597-9, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25918837

RESUMEN

Coordination of two bridging cobalt atoms to fullerenes by the η(2) type in {Co(dppe)}2{µ2-η(2):η(2)-η(2):η(2)-[(C60)2]}·3C6H4Cl2 [1; dppe = 1,2-bis(diphenylphosphino)ethane] triggers fullerene dimerization with the formation of two intercage C-C bonds of 1.571(4) Å length. Coordination-induced fullerene dimerization opens a path to the design of fullerene structures bonded by both covalent C-C bonds and η(2)-coordination-bridged metal atoms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA